A372497 Positive integers of the form k^2 - 1 that are the product of two other distinct positive integers of the form k^2 - 1.
24, 120, 360, 840, 960, 1680, 3024, 4224, 5040, 7920, 11880, 17160, 22800, 24024, 32760, 36480, 43680, 57120, 70224, 73440, 83520, 93024, 116280, 121800, 143640, 175560, 201600, 212520, 241080, 255024, 303600, 330624, 358800, 421200, 491400, 570024, 591360
Offset: 1
Keywords
Examples
120 is a term since 120 = 15*8 = (4^2 - 1)*(3^2 - 1) and 120 = 11^2 - 1.
Links
- David A. Corneth, Table of n, a(n) for n = 1..19120 (first 408 terms from Ely Golden, terms <= 10^17)
- David A. Corneth, PARI program
Programs
-
Mathematica
Rest[Take[With[{k2=Range[500]^2-1},Select[Union[Times@@@Subsets[k2,{2}]],IntegerQ[Sqrt[#+1]]&]],50]] (* Harvey P. Dale, Apr 20 2025 *)
-
PARI
isok1(k) = issquare(k+1); isok2(k) = fordiv(k, d, if (isok1(d) && isok1(k/d), return(1))); isok(k) = isok1(k) && isok2(k); \\ Michel Marcus, May 04 2024
-
Python
from math import isqrt def is_perfect_square(n): return isqrt(abs(n))**2 == n limit = 10**17 sequence_entries = set() for a in range(2, isqrt(isqrt(limit))+1): u = a**2 - 1 for b in range(a+1, isqrt(limit//u+1)+1): v = b**2 - 1 if(is_perfect_square(u*v + 1)): sequence_entries.add(u*v) sequence_entries = sorted(sequence_entries) for i, j in enumerate(sequence_entries, 1): print(i, j)
Extensions
Definition clarified by Harvey P. Dale, Apr 20 2025
Comments