cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372528 Expansion of g.f. A(x) satisfying A( -x * A( x - x^2 ) ) = -x^2.

Original entry on oeis.org

1, 1, 3, 8, 22, 65, 200, 637, 2090, 7021, 24041, 83611, 294511, 1048376, 3765080, 13623820, 49617990, 181733222, 668947823, 2473277248, 9180700787, 34200489886, 127819746470, 479124333321, 1800838945043, 6785517883825, 25626477179000, 96988079848223, 367794448974300, 1397301289617580
Offset: 1

Views

Author

Paul D. Hanna, May 05 2024

Keywords

Examples

			G.f.: A(x) = x + x^2 + 3*x^3 + 8*x^4 + 22*x^5 + 65*x^6 + 200*x^7 + 637*x^8 + 2090*x^9 + 7021*x^10 + 24041*x^11 + 83611*x^12 + ...
RELATED SERIES.
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x - x^2 - x^3 + 2*x^4 + 4*x^5 - 9*x^6 - 18*x^7 + 44*x^8 + 91*x^9 - 234*x^10 - 496*x^11 + 1318*x^12 + ...
where A(x - x^2) = R(-x^2)/(-x).
Also, the bisections B1 and B2 of R(x) are
B1 = (R(x) - R(-x))/2 = x - x^3 + 4*x^5 - 18*x^7 + 91*x^9 - 496*x^11 + 2839*x^13 - 16836*x^15 + 102545*x^17 - 637733*x^19 + ...
B2 = (R(x) + R(-x))/2 = -x^2 + 2*x^4 - 9*x^6 + 44*x^8 - 234*x^10 + 1318*x^12 - 7722*x^14 + 46594*x^16 - 287611*x^18 + 1807720*x^20 + ...
and satisfy B1^2 + B2 = 0 and A(-x*B1) = -B1^2.
SPECIFIC VALUES.
A( -A(2/9) / 3 ) = -1/9 where
A(2/9) = 0.3655811677545134614272600644874552972994602150418984...
A( -A(3/16) / 4 ) = -1/16 where
A(3/16) = 0.2645434685642398513217156896362957133168212272114320...
A( -A(4/25) / 5 ) = -1/25 where
A(4/25) = 0.2076566162630115730635446744577181791494166261819659...
A( -A(5/36) / 6 ) = -1/36 where
A(5/36) = 0.1711609712404346976409014231532840797963445277760447...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
    A[#A] = polcoeff( x^2 + subst(Ser(A), x, -x*subst(Ser(A), x, x - x^2) ), #A)); A[n+1]}
    for(n=1, 35, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n, along with its series reversion R(x), satisfy the following formulas.
(1) A( -x*A(x - x^2) ) = -x^2.
(2) A(x - x^2) = R(-x^2)/(-x).
(3) (R(x) - R(-x))^2 + 2*(R(x) + R(-x)) = 0.
(4) R(x) = R(-x) - 1 + sqrt(1 - 4*R(-x)).
(5) A(x) = -A( x - 1 + sqrt(1 - 4*x) ).
(6) A(x) = -A(x - 2*C(x)) where C(x) = -C(x - 2*C(x)) is a g.f. of the Catalan numbers (A000108).
(7) A( -A(x)*C(x) ) = -C(x)^2 where C(x) = (1 - sqrt(1 - 4*x))/2 is a g.f. of the Catalan numbers (A000108).