A372550 Primes such that the next 10 prime gaps are all distinct.
15919, 15923, 24113, 24517, 30509, 34883, 34897, 36107, 49201, 52747, 56249, 64927, 64937, 66107, 66109, 66191, 67247, 67261, 67271, 67273, 68147, 70639, 70657, 70663, 70667, 70687, 70709, 70717, 71549, 75797, 78317, 78929, 79979, 81083, 81101, 83701, 88301, 94117, 94603, 94613, 96497, 97609
Offset: 1
Keywords
Examples
a(3) = 24113 is a term because it is prime, the next 10 primes are 24121, 24133, 24137, 24151, 24169, 24179, 24181, 24197, 24203, 24223, and the gaps between these 11 primes are 8, 12, 4, 14, 18, 10, 2, 16, 6, 20 which are all distinct.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A079007.
Programs
-
Maple
P:= [seq(ithprime(i),i=1..11)]: R:= NULL: count:= 0: while count < 100 do P:= [op(P[2..-1]),nextprime(P[-1])]; if nops(convert(P[2..-1]-P[1..-2],set))=10 then count:= count+1; R:= R,P[1]; fi od: R;
-
Mathematica
s = {}; Do[If[10 == Length[Union[Differences[Prime[Range[k, k + 10]]]]], AppendTo[s, Prime[k]]], {k,, 10000}]; s