A372583 a(n) = (3*n^5 + 5*n^3)/8.
1, 17, 108, 424, 1250, 3051, 6517, 12608, 22599, 38125, 61226, 94392, 140608, 203399, 286875, 395776, 535517, 712233, 932824, 1205000, 1537326, 1939267, 2421233, 2994624, 3671875, 4466501, 5393142, 6467608, 7706924, 9129375, 10754551, 12603392, 14698233
Offset: 1
Examples
The first ten pentagonal numbers are 1, 5, 12, 22, 35, 51, 70, 92, 117, and 145. Taking them in groups, respectively, of 1, 2, 3, and 4, i.e., (1), (5, 12), (22, 35, 51), and (70, 92, 117, 145), and summing each group separately gives 1, 17, 108, 424.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Mathematica
A372583[n_] := (3*n^5 + 5*n^3)/8; Array[A372583, 50] (* Paolo Xausa, May 25 2024 *)
Formula
From Stefano Spezia, May 06 2024: (Start)
G.f.: x*(1 + 11*x + 21*x^2 + 11*x^3 + x^4)/(1 - x)^6.
E.g.f.: exp(x)*x*(8 + 60*x + 80*x^2 + 30*x^3 + 3*x^4)/8. (End)
Comments