cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A072474 Sum of next n squares.

Original entry on oeis.org

1, 13, 77, 294, 855, 2071, 4403, 8492, 15189, 25585, 41041, 63218, 94107, 136059, 191815, 264536, 357833, 475797, 623029, 804670, 1026431, 1294623, 1616187, 1998724, 2450525, 2980601, 3598713, 4315402, 5142019, 6090755, 7174671, 8407728, 9804817, 11381789, 13155485
Offset: 1

Views

Author

Amarnath Murthy, Jun 20 2002

Keywords

Examples

			a(1) = 1^2 = 1;
a(2) = 2^2 + 3^2 = 13;
a(3) = 4^2 + 5^2 + 6^2 = 77.
		

Crossrefs

Cf. A006003 (for natural numbers), A260513 (for triangular numbers), A372583 (for pentagonal numbers), A372751 (for hexagonal numbers), A075664 (for cubes).

Programs

  • Magma
    [n*(3*n^2+1)*(n^2+2)/12: n in [1..35]]; // Vincenzo Librandi, Dec 31 2024
  • Mathematica
    Table[Sum[ i^2, {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 35}]
  • PARI
    a(n) = n*(3*n^2+1)*(n^2+2)/12
    

Formula

a(n) = k*(k+1)*(2*k+1)/6 - r*(r+1)*(2*r+1)/6, where k = n*(n+1)/2 and r = n*(n-1)/2.
a(n) = A000330(n*(n+1)/2) - A000330(n*(n-1)/2).
a(n) = (n/12)*(3*n^2 + 1)*(n^2 + 2). - Benoit Cloitre, Jun 26 2002
G.f.: x*(1+3*x+x^2)*(1+4*x+x^2)/(1-x)^6. - Colin Barker, Mar 23 2012
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Jinyuan Wang, May 25 2020
E.g.f.: exp(x)*x*(12 + 66*x + 82*x^2 + 30*x^3 + 3*x^4)/12. - Stefano Spezia, May 14 2024

Extensions

Edited by Robert G. Wilson v, Jun 21 2002

A372472 Number of zeros in the binary expansion of the n-th squarefree number.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 3, 2, 2, 2, 1, 2, 1, 1, 0, 4, 4, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 5, 5, 4, 4, 4, 3, 4, 4, 3, 3, 2, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 4, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 1, 2, 1, 0, 6, 6, 5, 5, 5, 5, 5, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 12th squarefree number is 17, with binary expansion (1,0,0,0,1), so a(12) = 3.
		

Crossrefs

Positions of first appearances are A372473.
Restriction of A023416 to A005117.
For prime instead of squarefree we have A035103, ones A014499, bits A035100.
Counting 1's instead of 0's (so restrict A000120 to A005117) gives A372433.
For binary length we have A372475, run-lengths A077643.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

Formula

a(n) = A023416(A005117(n)).
a(n) + A372433(n) = A070939(A005117(n)) = A372475(n).

A372751 a(n) = (3*n^5 + 4*n^3 - n)/6.

Original entry on oeis.org

1, 21, 139, 554, 1645, 4031, 8631, 16724, 30009, 50665, 81411, 125566, 187109, 270739, 381935, 527016, 713201, 948669, 1242619, 1605330, 2048221, 2583911, 3226279, 3990524, 4893225, 5952401, 7187571, 8619814, 10271829, 12167995, 14334431, 16799056, 19591649
Offset: 1

Views

Author

Kelvin Voskuijl, May 12 2024

Keywords

Comments

Sums of hexagonal numbers (A000384) in successive groups of length 1,2,3,etc, so 1, 6+15, 28+45+66, 91+120+153+190, etc.

Examples

			The hexagonal numbers and their groups summed begin
  1, 6, 15, 28, 45, 66, 91, 120, 153, 190
  \/ \---/  \--------/  \---------------/
  1,   21,     139,            554
		

Crossrefs

Cf. A000384 (hexagonal numbers), A002412 (their partial sums).
Cf. A260513 (for triangular numbers), A072474 (for squares), A372583 (for pentagonal numbers), A075664 (cubes).

Programs

Formula

From Stefano Spezia, May 12 2024: (Start)
G.f.: x*(1 + 15*x + 28*x^2 + 15*x^3 + x^4)/(1 - x)^6.
E.g.f.: exp(x)*x*(6 + 57*x + 79*x^2 + 30*x^3 + 3*x^4)/6. (End)
Showing 1-3 of 3 results.