A075664
Sum of next n cubes.
Original entry on oeis.org
0, 1, 35, 405, 2584, 11375, 38961, 111475, 278720, 627669, 1300375, 2516921, 4604040, 8030035, 13446629, 21738375, 34080256, 52004105, 77474475, 112974589, 161603000, 227181591, 314375545, 428825915, 577295424, 767828125, 1009923551, 1314725985, 1695229480, 2166499259
Offset: 0
a(1) = 1^3 = 1; a(2) = 2^3 + 3^3 = 35; a(3) = 4^3 + 5^3 + 6^3 = 64 + 125 + 216 = 405.
From _Philippe Deléham_, Mar 09 2014: (Start)
a(1) = 1*2*3/8 = 1;
a(2) = 8*5*7/8 = 35;
a(3) = 27*10*12/8 = 405;
a(4) = 64*17*19/8 = 2584;
a(5) = 125*26*28/8 = 11375; etc. (End)
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[(n^7+4*n^5+3*n^3)/8: n in [1..30]]; // Vincenzo Librandi, Mar 11 2014
-
A075664:=n->(n^7 + 4n^5 + 3n^3)/8; seq(A075664(n), n=1..30); # Wesley Ivan Hurt, Mar 10 2014
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=3; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
CoefficientList[Series[(1 + 27 x + 153 x^2 + 268 x^3 + 153 x^4 + 27 x^5 + x^6)/(1 - x)^8, {x, 0, 40}], x](* Vincenzo Librandi, Mar 11 2014 *)
With[{nn=30},Total/@TakeList[Range[(nn(nn+1))/2]^3,Range[nn]]] (* Requires Mathematica version 11 or later *) (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,35,405,2584,11375,38961,111475,278720},30] (* Harvey P. Dale, Jun 05 2021 *)
-
a(n)=(n^7+4*n^5+3*n^3)/8 \\ Charles R Greathouse IV, Oct 07 2015
-
def A075664(n): return n*(m:=n**2)*(m*(m+4)+3)>>3 # Chai Wah Wu, Feb 09 2025
A069876
a(n) = (k-n+1)^n + (k-n+2)^n + ... + (k-1)^n + k^n, where k = n(n+1)/2.
Original entry on oeis.org
1, 13, 405, 23058, 2078375, 271739011, 48574262275, 11373936899396, 3377498614484589, 1240006139651007925, 551449374186192949841, 292093390490112799117190, 181694111127303339553250275, 131144830297438122797495823519, 108709456000518111261404495694375
Offset: 1
a(1) = 1^1 = 1; a(2) = 2^2 + 3^2 = 13; a(3) = 4^3 + 5^3 + 6^3 = 405; a(4) = 7^4 + 8^4 + 9^4 + 10^4 = 23058.
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; Table[Sum[i^n, {i, i1, i2}], {n, 20}]
-
def A069876(n): return sum(((n*(n+1)>>1)-i)**n for i in range(n)) # Chai Wah Wu, Feb 10 2025
More terms from Larry Reeves (larryr(AT)acm.org) and
Zak Seidov, Sep 24 2002
A050410
Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n-1} k^2.
Original entry on oeis.org
0, 1, 13, 50, 126, 255, 451, 728, 1100, 1581, 2185, 2926, 3818, 4875, 6111, 7540, 9176, 11033, 13125, 15466, 18070, 20951, 24123, 27600, 31396, 35525, 40001, 44838, 50050, 55651, 61655, 68076, 74928, 82225, 89981, 98210, 106926, 116143
Offset: 0
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999
1^2 + 1;
2^2 + 3^2 = 13;
3^2 + 4^2 + 5^2 = 50; ...
-
List([0..40], n-> n*(7*n-1)*(2*n-1)/6); # G. C. Greubel, Oct 30 2019
-
[n*(7*n-1)*(2*n-1)/6: n in [0..40]]; // Vincenzo Librandi, Apr 27 2012
-
seq(n*(7*n-1)*(2*n-1)/6, n=0..36); # Zerinvary Lajos, Dec 01 2006
-
Table[Sum[k^2,{k,n,2n-1}],{n,0,40}] (* or *) LinearRecurrence[{4,-6,4, -1}, {0,1,13,50},40] (* Harvey P. Dale, Feb 29 2012 *)
-
for(n=1,100,print1(sum(i=0,n-1,(n+i)^2),","))
-
vector(40, n, (n-1)*(7*n-8)*(2*n-3)/6) \\ G. C. Greubel, Oct 30 2019
-
[n*(7*n-1)*(2*n-1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019
A075671
Sum of next n 10th powers.
Original entry on oeis.org
1, 60073, 71280377, 14843001474, 1091618326275, 39736919990851, 870012241054523, 12967387960026452, 143075291905145949, 1240006139651007925, 8817026830146599701, 53151169903167142598, 278615540073819826527, 1295610629596485350799, 5430916505417064431575
Offset: 1
a(1) = 1^10 = 1; a(2) = 2^10 + 3^10 = 60073; a(3) = 4^10 + 5^10 + 6^10 = 71280377; a(4) = 7^10 + 8^10 + 9^10 + 10^10 = 14843001474.
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (22, -231, 1540, -7315, 26334, -74613, 170544, -319770, 497420, -646646, 705432, -646646, 497420, -319770, 170544, -74613, 26334, -7315, 1540, -231, 22, -1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=10; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^10,Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Mar 18 2018 *)
A072475
Sum of next n composite numbers.
Original entry on oeis.org
4, 14, 31, 63, 112, 176, 264, 385, 529, 712, 932, 1184, 1503, 1833, 2234, 2689, 3207, 3779, 4408, 5117, 5913, 6747, 7657, 8667, 9766, 10938, 12240, 13612, 15071, 16578, 18266, 20081, 22007, 23989, 26100, 28334, 30695, 33221, 35811, 38569, 41474
Offset: 1
-
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; Table[ Sum[ Composite[i], {i, n(n - 1)/2 + 1, n(n + 1)/2}], {n, 1, 42}]
With[{terms=50},cnos=With[{c=(terms(terms+1)(terms+2))/6}, Complement[ Range[5,c], Prime[Range[PrimePi[c]]]]];Join[{4}, Total/@Table[Take[ cnos,{n (n+1)/2,(n+1) (n+2)/2-1}],{n,terms-1}]]] (* Harvey P. Dale, Oct 10 2011 *)
A372583
a(n) = (3*n^5 + 5*n^3)/8.
Original entry on oeis.org
1, 17, 108, 424, 1250, 3051, 6517, 12608, 22599, 38125, 61226, 94392, 140608, 203399, 286875, 395776, 535517, 712233, 932824, 1205000, 1537326, 1939267, 2421233, 2994624, 3671875, 4466501, 5393142, 6467608, 7706924, 9129375, 10754551, 12603392, 14698233
Offset: 1
The first ten pentagonal numbers are 1, 5, 12, 22, 35, 51, 70, 92, 117, and 145. Taking them in groups, respectively, of 1, 2, 3, and 4, i.e., (1), (5, 12), (22, 35, 51), and (70, 92, 117, 145), and summing each group separately gives 1, 17, 108, 424.
A075665
Sum of next n 4th powers.
Original entry on oeis.org
1, 97, 2177, 23058, 152979, 738835, 2839571, 9191876, 26037717, 66301333, 154762069, 336050870, 686502375, 1331121351, 2467171687, 4396168328, 7566347369, 12628007049, 20504452585, 32481640666, 50320004987, 76392352443, 113852150523, 166836980044, 240712403645
Offset: 1
a(1) = 1^4 = 1; a(2) = 2^4 + 3^4 = 97; a(3) = 4^4 + 5^4 + 6^4 = 2177; a(4) = 7^4 + 8^4 + 9^4 + 10^4 = 23058.
- Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=4; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Table[Total[Range[(n(n+1))/2+1,((n+1)(n+2))/2]^4],{n,0,20}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,97,2177,23058,152979,738835,2839571,9191876,26037717,66301333},30] (* Harvey P. Dale, Dec 18 2015 *)
A075670
Sum of next n 9th powers.
Original entry on oeis.org
1, 20195, 12292965, 1561991824, 77226633575, 2014634387961, 33098483802475, 383318212734080, 3377498614484589, 23898971839102975, 141290020118952881, 719054471032657200, 3223613105991831475, 12964037775857022869, 47453810583528962775, 159982264435790734336
Offset: 1
a(1) = 1^9 = 1; a(2) = 2^9 + 3^9 = 20195; a(3) = 4^9 + 5^9 + 6^9 = 12292965; a(4) = 7^9 + 8^9 + 9^9 + 10^9 = 1561991824.
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
-
[(5*n^19 + 105*n^17 + 666*n^15 + 1530*n^13 + 689*n^11 - 995*n^9 + 304*n^7 + 640*n^5 - 384*n^3)/2560 : n in [1..20]]; // Vincenzo Librandi, Oct 06 2011
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=9; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Total[#^9]&/@(Range[First[#]+1,Last[#]]&/@Partition[Accumulate[Range[ 0,15]],2,1]) (* Harvey P. Dale, Oct 05 2011 *)
With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^9,Range[nn]]] (* Harvey P. Dale, Aug 05 2025 *)
A372751
a(n) = (3*n^5 + 4*n^3 - n)/6.
Original entry on oeis.org
1, 21, 139, 554, 1645, 4031, 8631, 16724, 30009, 50665, 81411, 125566, 187109, 270739, 381935, 527016, 713201, 948669, 1242619, 1605330, 2048221, 2583911, 3226279, 3990524, 4893225, 5952401, 7187571, 8619814, 10271829, 12167995, 14334431, 16799056, 19591649
Offset: 1
The hexagonal numbers and their groups summed begin
1, 6, 15, 28, 45, 66, 91, 120, 153, 190
\/ \---/ \--------/ \---------------/
1, 21, 139, 554
A380353
a(n) = (n^2 - n + 2) * (5*n^2 - 5*n + 2) / 4.
Original entry on oeis.org
1, 12, 64, 217, 561, 1216, 2332, 4089, 6697, 10396, 15456, 22177, 30889, 41952, 55756, 72721, 93297, 117964, 147232, 181641, 221761, 268192, 321564, 382537, 451801, 530076, 618112, 716689, 826617, 948736, 1083916, 1233057, 1397089, 1576972, 1773696, 1988281, 2221777
Offset: 1
Cf.
A005448 (first difference of sum of next n natural numbers).
-
Table[((n^2 - n + 2)*(5*n^2 - 5*n + 2))/4, {n, 1, 40}]
-
a(n) = (n^2 - n + 2) * (5*n^2 - 5*n + 2) / 4
Showing 1-10 of 14 results.
Comments