A075664
Sum of next n cubes.
Original entry on oeis.org
0, 1, 35, 405, 2584, 11375, 38961, 111475, 278720, 627669, 1300375, 2516921, 4604040, 8030035, 13446629, 21738375, 34080256, 52004105, 77474475, 112974589, 161603000, 227181591, 314375545, 428825915, 577295424, 767828125, 1009923551, 1314725985, 1695229480, 2166499259
Offset: 0
a(1) = 1^3 = 1; a(2) = 2^3 + 3^3 = 35; a(3) = 4^3 + 5^3 + 6^3 = 64 + 125 + 216 = 405.
From _Philippe Deléham_, Mar 09 2014: (Start)
a(1) = 1*2*3/8 = 1;
a(2) = 8*5*7/8 = 35;
a(3) = 27*10*12/8 = 405;
a(4) = 64*17*19/8 = 2584;
a(5) = 125*26*28/8 = 11375; etc. (End)
- Kelvin Voskuijl, Table of n, a(n) for n = 0..10000 (terms 1..1000 from Vincenzo Librandi)
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
[(n^7+4*n^5+3*n^3)/8: n in [1..30]]; // Vincenzo Librandi, Mar 11 2014
-
A075664:=n->(n^7 + 4n^5 + 3n^3)/8; seq(A075664(n), n=1..30); # Wesley Ivan Hurt, Mar 10 2014
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=3; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
CoefficientList[Series[(1 + 27 x + 153 x^2 + 268 x^3 + 153 x^4 + 27 x^5 + x^6)/(1 - x)^8, {x, 0, 40}], x](* Vincenzo Librandi, Mar 11 2014 *)
With[{nn=30},Total/@TakeList[Range[(nn(nn+1))/2]^3,Range[nn]]] (* Requires Mathematica version 11 or later *) (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,35,405,2584,11375,38961,111475,278720},30] (* Harvey P. Dale, Jun 05 2021 *)
-
a(n)=(n^7+4*n^5+3*n^3)/8 \\ Charles R Greathouse IV, Oct 07 2015
-
def A075664(n): return n*(m:=n**2)*(m*(m+4)+3)>>3 # Chai Wah Wu, Feb 09 2025
A069876
a(n) = (k-n+1)^n + (k-n+2)^n + ... + (k-1)^n + k^n, where k = n(n+1)/2.
Original entry on oeis.org
1, 13, 405, 23058, 2078375, 271739011, 48574262275, 11373936899396, 3377498614484589, 1240006139651007925, 551449374186192949841, 292093390490112799117190, 181694111127303339553250275, 131144830297438122797495823519, 108709456000518111261404495694375
Offset: 1
a(1) = 1^1 = 1; a(2) = 2^2 + 3^2 = 13; a(3) = 4^3 + 5^3 + 6^3 = 405; a(4) = 7^4 + 8^4 + 9^4 + 10^4 = 23058.
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; Table[Sum[i^n, {i, i1, i2}], {n, 20}]
-
def A069876(n): return sum(((n*(n+1)>>1)-i)**n for i in range(n)) # Chai Wah Wu, Feb 10 2025
More terms from Larry Reeves (larryr(AT)acm.org) and
Zak Seidov, Sep 24 2002
A075665
Sum of next n 4th powers.
Original entry on oeis.org
1, 97, 2177, 23058, 152979, 738835, 2839571, 9191876, 26037717, 66301333, 154762069, 336050870, 686502375, 1331121351, 2467171687, 4396168328, 7566347369, 12628007049, 20504452585, 32481640666, 50320004987, 76392352443, 113852150523, 166836980044, 240712403645
Offset: 1
a(1) = 1^4 = 1; a(2) = 2^4 + 3^4 = 97; a(3) = 4^4 + 5^4 + 6^4 = 2177; a(4) = 7^4 + 8^4 + 9^4 + 10^4 = 23058.
- Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=4; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Table[Total[Range[(n(n+1))/2+1,((n+1)(n+2))/2]^4],{n,0,20}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,97,2177,23058,152979,738835,2839571,9191876,26037717,66301333},30] (* Harvey P. Dale, Dec 18 2015 *)
A075670
Sum of next n 9th powers.
Original entry on oeis.org
1, 20195, 12292965, 1561991824, 77226633575, 2014634387961, 33098483802475, 383318212734080, 3377498614484589, 23898971839102975, 141290020118952881, 719054471032657200, 3223613105991831475, 12964037775857022869, 47453810583528962775, 159982264435790734336
Offset: 1
a(1) = 1^9 = 1; a(2) = 2^9 + 3^9 = 20195; a(3) = 4^9 + 5^9 + 6^9 = 12292965; a(4) = 7^9 + 8^9 + 9^9 + 10^9 = 1561991824.
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (20, -190, 1140, -4845, 15504, -38760, 77520, -125970, 167960, -184756, 167960, -125970, 77520, -38760, 15504, -4845, 1140, -190, 20, -1).
-
[(5*n^19 + 105*n^17 + 666*n^15 + 1530*n^13 + 689*n^11 - 995*n^9 + 304*n^7 + 640*n^5 - 384*n^3)/2560 : n in [1..20]]; // Vincenzo Librandi, Oct 06 2011
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=9; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Total[#^9]&/@(Range[First[#]+1,Last[#]]&/@Partition[Accumulate[Range[ 0,15]],2,1]) (* Harvey P. Dale, Oct 05 2011 *)
With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^9,Range[nn]]] (* Harvey P. Dale, Aug 05 2025 *)
A075666
Sum of next n 5th powers.
Original entry on oeis.org
1, 275, 11925, 208624, 2078375, 14118201, 72758875, 304553600, 1084203549, 3390961375, 9540835601, 24582546000, 58801331875, 131987718149, 280410672375, 567799960576, 1102105900025, 2060382328875, 3724847929549, 6534040766000, 11154010982751, 18575718271825
Offset: 1
a(1) = 1^5 = 1; a(2) = 2^5 + 3^5 = 275; a(3) = 4^5 + 5^5 + 6^5 = 11925; a(4) = 7^5 + 8^5 + 9^5 + 10^5 = 208624.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=5; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
nn=30;With[{p5=Range[((nn+1)(nn+2))/2]^5},Join[{1},Table[Total[Take[p5,{(n(n+1))/2+1,((n+1)(n+2))/2}]],{n,nn}]]] (* Harvey P. Dale, Mar 09 2014 *)
Module[{nn=25,p5},p5=Range[(nn(nn+1))/2]^5;Total/@TakeList[p5,Range[nn]]] (* Harvey P. Dale, Oct 13 2023 *)
A075667
Sum of next n 6th powers.
Original entry on oeis.org
1, 793, 66377, 1911234, 28504515, 271739011, 1874885963, 10136389172, 45311985069, 173957200405, 589679082421, 1802148522758, 5045944649967, 13108508706879, 31915866810295, 73427944186856, 160710828298553, 336507487921137, 677266380588289, 1315464522556810
Offset: 1
a(1) = 1^6 = 1; a(2) = 2^6 + 3^6 = 793; a(3) = 4^6 + 5^6 + 6^6 = 66377; a(4) = 7^6 + 8^6 + 9^6 + 10^6 = 1911234.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=6; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^6,Range[nn]]] (* or *) LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,793,66377,1911234,28504515,271739011,1874885963,10136389172,45311985069,173957200405,589679082421,1802148522758,5045944649967,13108508706879},20] (* Harvey P. Dale, Mar 29 2022 *)
A075668
Sum of next n 7th powers.
Original entry on oeis.org
1, 2315, 374445, 17703664, 394340375, 5265954441, 48574262275, 338837482880, 1900477947429, 8950536157375, 36536761179281, 132397570996560, 433806511149115, 1303971065324669, 3637715990646375, 9507513902672896, 23461050872397545, 55013865421504275
Offset: 1
a(1) = 1^7 = 1; a(2) = 2^7 + 3^7 = 2315; a(3) = 4^7 + 5^7 + 6^7 = 374445; a(4) = 7^7 + 8^7 + 9^7 + 10^7 = 17703664.
- Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=7; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
A075669
Sum of next n 8th powers.
Original entry on oeis.org
1, 6817, 2135777, 165588738, 5498750979, 102697107715, 1264908663011, 11373936899396, 79985007371877, 461856872635333, 2269365182729029, 9747136491367430, 37362375267437415, 129917413702762791, 415196000174767687, 1232554282743058568, 3428668198703973449
Offset: 1
a(1) = 1^8 = 1; a(2) = 2^8 + 3^8 = 6817; a(3) = 4^8 + 5^8 + 6^8 = 2135777; a(4) = 7^8 + 8^8 + 9^8 + 10^8 = 165588738.
- Kelvin Voskuijl, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (18,-153,816,-3060,8568,-18564,31824,-43758,48620,-43758,31824,-18564,8568,-3060,816,-153,18,-1).
-
i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=8; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
Showing 1-8 of 8 results.
Comments