cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372762 Number T(n,k) of partitions of [n] having exactly k blocks of minimal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 31, 10, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 344, 336, 140, 35, 21, 0, 1, 0, 1661, 1393, 616, 385, 56, 28, 0, 1, 0, 7942, 6210, 4984, 1386, 504, 84, 36, 0, 1, 0, 38721, 41331, 22590, 8610, 3717, 840, 120, 45, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 12 2024

Keywords

Examples

			T(5,1) = 31: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34.
T(5,2) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
T(5,3) = 10: 12|3|4|5, 13|2|4|5, 1|23|4|5, 14|2|3|5, 1|24|3|5, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
T(5,4) = 0.
T(5,5) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     0,     1;
  0,     5,     9,     0,    1;
  0,    31,    10,    10,    0,    1;
  0,    82,    70,    35,   15,    0,   1;
  0,   344,   336,   140,   35,   21,   0,   1;
  0,  1661,  1393,   616,  385,   56,  28,   0,  1;
  0,  7942,  6210,  4984, 1386,  504,  84,  36,  0, 1;
  0, 38721, 41331, 22590, 8610, 3717, 840, 120, 45, 0, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A224219, A372764.
Row sums give A000110.
T(2n,n) gives A271425.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(binomial(n-1, j-1)*b(n-j, min(j, m),
         `if`(j (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..12);

Formula

Sum_{k=0..n} k * T(n,k) = A372650(n).

A372649 Total sum over all partitions of [n] of the number of maximal blocks.

Original entry on oeis.org

0, 1, 3, 7, 21, 71, 293, 1268, 6107, 31123, 170745, 998966, 6212627, 40854360, 283290348, 2059884614, 15667307457, 124266461587, 1025342179759, 8784261413616, 78003593175261, 716854898767936, 6808817431686858, 66754426111124686, 674754718441688851
Offset: 0

Views

Author

Alois P. Heinz, May 08 2024

Keywords

Examples

			a(3) = 7 = 3 + 1 + 1 + 1 + 1: 1|2|3, 1|23, 12|3, 13|2, 123.
a(4) = 21 = 1+1+1+2+1+1+2+1+2+1+1+1+1+1+4: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t,
          add(binomial(n-1, j-1)*b(n-j, max(j, m),
         `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, t,
       Sum[Binomial[n - 1, j - 1]*b[n - j, Max[j, m],
       If[j > m, 1, If[j == m, t + 1, t]]], {j, 1, n}]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 10 2024, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A372722(n,k).
Showing 1-2 of 2 results.