A224219
Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.
Original entry on oeis.org
1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
Offset: 1
a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
-
with(combinat):
b:= proc(n, i) option remember;
`if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*
multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))
end:
a:= n-> b(n$2):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 07 2016
-
nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1]
(* Second program: *)
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
A372722
Number T(n,k) of partitions of [n] having exactly k blocks of maximal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 36, 15, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 596, 175, 105, 0, 0, 0, 1, 0, 2809, 805, 420, 105, 0, 0, 0, 1, 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1, 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1, 0, 461748, 151371, 37730, 17325, 10395, 0, 0, 0, 0, 0, 1
Offset: 0
T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,3) = 0.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 3, 0, 1;
0, 36, 15, 0, 0, 1;
0, 132, 55, 15, 0, 0, 1;
0, 596, 175, 105, 0, 0, 0, 1;
0, 2809, 805, 420, 105, 0, 0, 0, 1;
0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1;
0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1;
...
-
b:= proc(n, m, t) option remember; `if`(n=0, x^t,
add(binomial(n-1, j-1)*b(n-j, max(j, m),
`if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0$2)):
seq(T(n), n=0..12);
A271425
Number of set partitions of [2n] with maximal block length multiplicity equal to n.
Original entry on oeis.org
1, 1, 9, 35, 385, 3717, 48279, 691119, 11229075, 200982925, 3928974907, 83060120871, 1885501840677, 45694145548625, 1176704027583075, 32077561625780175, 922854842240358825, 27951355368760441365, 889580295850449177975, 29707539555680924142975
Offset: 0
a(1) = 1: 12.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(3) = 35: 123|4|5|6, 124|3|5|6, 12|34|56, 125|3|4|6, 12|35|46, 12|36|45, 126|3|4|5, 134|2|5|6, 13|24|56, 135|2|4|6, 13|25|46, 13|26|45, 136|2|4|5, 14|23|56, 1|234|5|6, 15|23|46, 1|235|4|6, 16|23|45, 1|236|4|5, 145|2|3|6, 14|25|36, 14|26|35, 146|2|3|5, 15|24|36, 1|245|3|6, 16|24|35, 1|246|3|5, 15|26|34, 16|25|34, 1|2|345|6, 1|2|346|5, 156|2|3|4, 1|256|3|4, 1|2|356|4, 1|2|3|456.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
a:= n-> `if`(n=0, 1, b(2*n$2, n)-b(2*n$2, n-1)):
seq(a(n), n=0..20);
-
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]*b[n - i*j, i-1, k]/j!, {j, 0, Min[k, n/i]}]]]; a[n_] := If[n==0, 1, b[2n, 2n, n] - b[2n, 2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
A372650
Total sum over all partitions of [n] of the number of minimal blocks.
Original entry on oeis.org
0, 1, 3, 7, 27, 86, 393, 1688, 8291, 44143, 248428, 1480073, 9440049, 63265606, 444309232, 3273807272, 25227429123, 202458174614, 1689474026499, 14636685675142, 131413462612012, 1220636654904548, 11712836883408675, 115956109213769404, 1182944504931376337
Offset: 0
a(4) = 27 = 1+1+1+2+2+1+2+2+2+1+2+2+2+2+4: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
-
b:= proc(n, m, t) option remember; `if`(n=0, t,
add(binomial(n-1, j-1)*b(n-j, min(j, m),
`if`(j b(n$2, 0):
seq(a(n), n=0..24);
-
b[n_, m_, t_] := b[n, m, t] = If[n == 0, t,
Sum[Binomial[n - 1, j - 1]*b[n - j, Min[j, m],
If[j < m, 1, If[j == m, t + 1, t]]], {j, 1, n}]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 11 2024, after Alois P. Heinz *)
A372764
Number of partitions of [n] having exactly two blocks of minimal size.
Original entry on oeis.org
0, 0, 1, 0, 9, 10, 70, 336, 1393, 6210, 41331, 228635, 1315974, 8779134, 61675419, 434566510, 3237964993, 25386526258, 207569429548, 1756564362651, 15418550267179, 140015129879331, 1316198207272686, 12786566843038549, 128035136707876270, 1319513338177755510
Offset: 0
a(2) = 1: 1|2.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
-
b:= proc(n, m, t) option remember; `if`(n=0,
`if`(t=2, 1, 0), add(binomial(n-1, j-1)*b(n-j, min(j, m),
`if`(j b(n$2, 0):
seq(a(n), n=0..25);
Showing 1-5 of 5 results.
Comments