cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A224219 Number of set partitions of {1,2,...,n} such that the size of the smallest block is unique.

Original entry on oeis.org

1, 1, 4, 5, 31, 82, 344, 1661, 7942, 38721, 228680, 1377026, 8529756, 56756260, 402300799, 2960135917, 22692746719, 181667760724, 1516381486766, 13135566948285, 117868982320877, 1093961278908818, 10492653292100919, 103880022098900234, 1059925027073166856
Offset: 1

Views

Author

Geoffrey Critzer, Apr 01 2013

Keywords

Comments

In other words, if the smallest block in a partition has size k then there are no other blocks in the partition with size k.

Examples

			a(4) = 5 because we have: {{1,2,3,4}}, {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}}, {{1,2,4},{3}}.
		

Crossrefs

Column k=1 of A372762.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember;
          `if`(i<1, 0, `if`(n=i, 1, 0)+add(b(n-i*j, i-1)*
           multinomial(n, n-i*j, i$j)/j!, j=0..(n-1)/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jul 07 2016
  • Mathematica
    nn=25;Drop[Range[0,nn]!CoefficientList[Series[Sum[x^k/k!Exp[Exp[x]-Sum[x^i/i!,{i,0,k}]],{k,1,nn}],{x,0,nn}],x],1]
    (* Second program: *)
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[i<1, 0, If[n==i, 1, 0] + Sum[b[n-i*j, i-1]*multinomial[n, Prepend[Array[i&, j], n-i*j]]/j!, {j, 0, (n-1)/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: Sum_{k>=1} x^k/k! * exp(exp(x) - Sum_{i=0..k} x^i/i!).

A372722 Number T(n,k) of partitions of [n] having exactly k blocks of maximal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 36, 15, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 596, 175, 105, 0, 0, 0, 1, 0, 2809, 805, 420, 105, 0, 0, 0, 1, 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1, 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1, 0, 461748, 151371, 37730, 17325, 10395, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 11 2024

Keywords

Examples

			T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,3) = 0.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     0,    1;
  0,    11,     3,    0,    1;
  0,    36,    15,    0,    0,   1;
  0,   132,    55,   15,    0,   0, 1;
  0,   596,   175,  105,    0,   0, 0, 1;
  0,  2809,   805,  420,  105,   0, 0, 0, 1;
  0, 14608,  4053, 1540,  945,   0, 0, 0, 0, 1;
  0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A372721.
Row sums give A000110.
T(2n,n) gives A001147.
T(3n,n) gives A271715.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(binomial(n-1, j-1)*b(n-j, max(j, m),
         `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0$2)):
    seq(T(n), n=0..12);

Formula

Sum_{k=0..n} k * T(n,k) = A372649(n).

A271425 Number of set partitions of [2n] with maximal block length multiplicity equal to n.

Original entry on oeis.org

1, 1, 9, 35, 385, 3717, 48279, 691119, 11229075, 200982925, 3928974907, 83060120871, 1885501840677, 45694145548625, 1176704027583075, 32077561625780175, 922854842240358825, 27951355368760441365, 889580295850449177975, 29707539555680924142975
Offset: 0

Views

Author

Alois P. Heinz, Apr 07 2016

Keywords

Comments

In each set partition of [2n] counted by a(n) at least one block length occurs exactly n times, and all block lengths occur at most n times.

Examples

			a(1) = 1: 12.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(3) = 35: 123|4|5|6, 124|3|5|6, 12|34|56, 125|3|4|6, 12|35|46, 12|36|45, 126|3|4|5, 134|2|5|6, 13|24|56, 135|2|4|6, 13|25|46, 13|26|45, 136|2|4|5, 14|23|56, 1|234|5|6, 15|23|46, 1|235|4|6, 16|23|45, 1|236|4|5, 145|2|3|6, 14|25|36, 14|26|35, 146|2|3|5, 15|24|36, 1|245|3|6, 16|24|35, 1|246|3|5, 15|26|34, 16|25|34, 1|2|345|6, 1|2|346|5, 156|2|3|4, 1|256|3|4, 1|2|356|4, 1|2|3|456.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, k) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
            *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n$2, n)-b(2*n$2, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]*b[n - i*j, i-1, k]/j!, {j, 0, Min[k, n/i]}]]]; a[n_] := If[n==0, 1, b[2n, 2n, n] - b[2n, 2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)

Formula

a(n) = A271423(2n,n).
a(n) = A372762(2n,n). - Alois P. Heinz, May 12 2024

A372650 Total sum over all partitions of [n] of the number of minimal blocks.

Original entry on oeis.org

0, 1, 3, 7, 27, 86, 393, 1688, 8291, 44143, 248428, 1480073, 9440049, 63265606, 444309232, 3273807272, 25227429123, 202458174614, 1689474026499, 14636685675142, 131413462612012, 1220636654904548, 11712836883408675, 115956109213769404, 1182944504931376337
Offset: 0

Views

Author

Alois P. Heinz, May 08 2024

Keywords

Examples

			a(4) = 27 = 1+1+1+2+2+1+2+2+2+1+2+2+2+2+4: 1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, t,
          add(binomial(n-1, j-1)*b(n-j, min(j, m),
         `if`(j b(n$2, 0):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, m_, t_] := b[n, m, t] = If[n == 0, t,
       Sum[Binomial[n - 1, j - 1]*b[n - j, Min[j, m],
       If[j < m, 1, If[j == m, t + 1, t]]], {j, 1, n}]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 11 2024, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A372762(n,k).

A372764 Number of partitions of [n] having exactly two blocks of minimal size.

Original entry on oeis.org

0, 0, 1, 0, 9, 10, 70, 336, 1393, 6210, 41331, 228635, 1315974, 8779134, 61675419, 434566510, 3237964993, 25386526258, 207569429548, 1756564362651, 15418550267179, 140015129879331, 1316198207272686, 12786566843038549, 128035136707876270, 1319513338177755510
Offset: 0

Views

Author

Alois P. Heinz, May 12 2024

Keywords

Examples

			a(2) = 1: 1|2.
a(4) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
a(5) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
		

Crossrefs

Column k=2 of A372762.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0,
         `if`(t=2, 1, 0), add(binomial(n-1, j-1)*b(n-j, min(j, m),
         `if`(j b(n$2, 0):
    seq(a(n), n=0..25);
Showing 1-5 of 5 results.