cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372762 Number T(n,k) of partitions of [n] having exactly k blocks of minimal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 31, 10, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 344, 336, 140, 35, 21, 0, 1, 0, 1661, 1393, 616, 385, 56, 28, 0, 1, 0, 7942, 6210, 4984, 1386, 504, 84, 36, 0, 1, 0, 38721, 41331, 22590, 8610, 3717, 840, 120, 45, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 12 2024

Keywords

Examples

			T(5,1) = 31: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34.
T(5,2) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
T(5,3) = 10: 12|3|4|5, 13|2|4|5, 1|23|4|5, 14|2|3|5, 1|24|3|5, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
T(5,4) = 0.
T(5,5) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  0,     1;
  0,     1,     1;
  0,     4,     0,     1;
  0,     5,     9,     0,    1;
  0,    31,    10,    10,    0,    1;
  0,    82,    70,    35,   15,    0,   1;
  0,   344,   336,   140,   35,   21,   0,   1;
  0,  1661,  1393,   616,  385,   56,  28,   0,  1;
  0,  7942,  6210,  4984, 1386,  504,  84,  36,  0, 1;
  0, 38721, 41331, 22590, 8610, 3717, 840, 120, 45, 0, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A224219, A372764.
Row sums give A000110.
T(2n,n) gives A271425.

Programs

  • Maple
    b:= proc(n, m, t) option remember; `if`(n=0, x^t,
          add(binomial(n-1, j-1)*b(n-j, min(j, m),
         `if`(j (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
    seq(T(n), n=0..12);

Formula

Sum_{k=0..n} k * T(n,k) = A372650(n).
Showing 1-1 of 1 results.