A372683 Least squarefree number >= 2^n.
1, 2, 5, 10, 17, 33, 65, 129, 257, 514, 1027, 2049, 4097, 8193, 16385, 32770, 65537, 131073, 262145, 524289, 1048577, 2097154, 4194305, 8388609, 16777217, 33554433, 67108865, 134217730, 268435457, 536870913, 1073741826, 2147483649, 4294967297, 8589934594
Offset: 0
Keywords
Examples
The terms together with their binary expansions and binary indices begin: 1: 1 ~ {1} 2: 10 ~ {2} 5: 101 ~ {1,3} 10: 1010 ~ {2,4} 17: 10001 ~ {1,5} 33: 100001 ~ {1,6} 65: 1000001 ~ {1,7} 129: 10000001 ~ {1,8} 257: 100000001 ~ {1,9} 514: 1000000010 ~ {2,10} 1027: 10000000011 ~ {1,2,11} 2049: 100000000001 ~ {1,12} 4097: 1000000000001 ~ {1,13} 8193: 10000000000001 ~ {1,14} 16385: 100000000000001 ~ {1,15} 32770: 1000000000000010 ~ {2,16} 65537: 10000000000000001 ~ {1,17} 131073: 100000000000000001 ~ {1,18} 262145: 1000000000000000001 ~ {1,19} 524289: 10000000000000000001 ~ {1,20}
Crossrefs
Programs
-
Mathematica
Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&],{n,0,10}]
-
PARI
a(n) = my(k=2^n); while (!issquarefree(k), k++); k; \\ Michel Marcus, May 29 2024
-
Python
from itertools import count from sympy import factorint def A372683(n): return next(i for i in count(1<
Chai Wah Wu, Aug 26 2024
Formula
a(n) = A067535(2^n). - R. J. Mathar, May 31 2024