A372684 Least k such that prime(k) >= 2^n.
1, 3, 5, 7, 12, 19, 32, 55, 98, 173, 310, 565, 1029, 1901, 3513, 6543, 12252, 23001, 43391, 82026, 155612, 295948, 564164, 1077872, 2063690, 3957810, 7603554, 14630844, 28192751, 54400029, 105097566, 203280222, 393615807, 762939112, 1480206280, 2874398516, 5586502349
Offset: 1
Keywords
Examples
The numbers prime(a(n)) together with their binary expansions and binary indices begin: 2: 10 ~ {2} 5: 101 ~ {1,3} 11: 1011 ~ {1,2,4} 17: 10001 ~ {1,5} 37: 100101 ~ {1,3,6} 67: 1000011 ~ {1,2,7} 131: 10000011 ~ {1,2,8} 257: 100000001 ~ {1,9} 521: 1000001001 ~ {1,4,10} 1031: 10000000111 ~ {1,2,3,11} 2053: 100000000101 ~ {1,3,12} 4099: 1000000000011 ~ {1,2,13} 8209: 10000000010001 ~ {1,5,14} 16411: 100000000011011 ~ {1,2,4,5,15} 32771: 1000000000000011 ~ {1,2,16} 65537: 10000000000000001 ~ {1,17} 131101: 100000000000011101 ~ {1,3,4,5,18} 262147: 1000000000000000011 ~ {1,2,19} 524309: 10000000000000010101 ~ {1,3,5,20} 1048583: 100000000000000000111 ~ {1,2,3,21} 2097169: 1000000000000000010001 ~ {1,5,22} 4194319: 10000000000000000001111 ~ {1,2,3,4,23} 8388617: 100000000000000000001001 ~ {1,4,24}
Crossrefs
The opposite (greatest k such that prime(k) <= 2^n) is A007053.
Positions of first appearances in A035100.
The distance from prime(a(n)) to 2^n is A092131.
For primes between powers of 2:
- sum A293697
- length A036378
For squarefree numbers between powers of 2:
- sum A373123
For squarefree numbers between primes:
- sum A373197
- min A000040
Programs
-
Mathematica
Table[PrimePi[If[n==1,2,NextPrime[2^n]]],{n,30}]
-
PARI
a(n) = primepi(nextprime(2^n)); \\ Michel Marcus, May 31 2024
Formula
Extensions
More terms from Michel Marcus, May 31 2024