A372688 Number of integer partitions y of n whose rank Sum_i 2^(y_i-1) is prime.
0, 0, 2, 2, 1, 3, 3, 6, 3, 6, 9, 20, 13, 22, 22, 45, 47, 70, 75, 100, 107, 132, 157, 202, 229, 302, 396, 495, 536, 699, 820, 962, 1193, 1507, 1699, 2064, 2455, 2945, 3408, 4026, 4691, 5749, 6670, 7614, 9127, 10930, 12329, 14370, 16955, 19961, 22950, 26574, 30941
Offset: 0
Keywords
Examples
The partition (3,2,1) has rank 2^(3-1) + 2^(2-1) + 2^(1-1) = 7, which is prime, so (3,2,1) is counted under a(6). The a(2) = 2 through a(10) = 9 partitions: (2) (21) (31) (221) (51) (421) (431) (441) (91) (11) (111) (2111) (321) (2221) (521) (3321) (631) (11111) (3111) (4111) (5111) (4221) (721) (22111) (33111) (3331) (211111) (42111) (7111) (1111111) (411111) (32221) (322111) (3211111) (31111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^#]/2]&]],{n,0,30}]
Comments