A048675
If n = p_i^e_i * ... * p_k^e_k, p_i < ... < p_k primes (with p_i = prime(i)), then a(n) = (1/2) * (e_i * 2^i + ... + e_k * 2^k).
Original entry on oeis.org
0, 1, 2, 2, 4, 3, 8, 3, 4, 5, 16, 4, 32, 9, 6, 4, 64, 5, 128, 6, 10, 17, 256, 5, 8, 33, 6, 10, 512, 7, 1024, 5, 18, 65, 12, 6, 2048, 129, 34, 7, 4096, 11, 8192, 18, 8, 257, 16384, 6, 16, 9, 66, 34, 32768, 7, 20, 11, 130, 513, 65536, 8, 131072, 1025, 12, 6, 36, 19
Offset: 1
From _Gus Wiseman_, May 22 2024: (Start)
The A018819(7) = 6 cases of binary rank 7 are the following, together with their prime indices:
30: {1,2,3}
40: {1,1,1,3}
54: {1,2,2,2}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
128: {1,1,1,1,1,1,1}
(End)
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (
A000203,
A331750), (
A005940,
A087808), (
A007913,
A248663), (
A007947,
A087207), (
A097248,
A048675), (
A206296,
A000129), (
A248692,
A056239), (
A283477,
A005187), (
A284003,
A006068), (
A285101,
A028362), (
A285102,
A068052), (
A293214,
A001065), (
A318834,
A051953), (
A319991,
A293897), (
A319992,
A293898), (
A320017,
A318674), (
A329352,
A069359), (
A332461,
A156552), (
A332462,
A156552), (
A332825,
A000010) and apparently (
A163511,
A135529).
The formula section details how the sequence maps the terms of
A329050,
A329332.
The term k appears
A018819(k) times.
The inverse transformation is
A019565 (Heinz number of binary indices).
The version for distinct prime indices is
A087207.
A014499 lists binary indices of prime numbers.
Binary indices:
-
nthprime := proc(n) local i; if(isprime(n)) then for i from 1 to 1000000 do if(ithprime(i) = n) then RETURN(i); fi; od; else RETURN(0); fi; end; # nthprime(2) = 1, nthprime(3) = 2, nthprime(5) = 3, etc. - this is also A049084.
A048675 := proc(n) local s,d; s := 0; for d in ifactors(n)[ 2 ] do s := s + d[ 2 ]*(2^(nthprime(d[ 1 ])-1)); od; RETURN(s); end;
# simpler alternative
f:= n -> add(2^(numtheory:-pi(t[1])-1)*t[2], t=ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Oct 10 2016
-
a[1] = 0; a[n_] := Total[ #[[2]]*2^(PrimePi[#[[1]]]-1)& /@ FactorInteger[n] ]; Array[a, 100] (* Jean-François Alcover, Mar 15 2016 *)
-
a(n) = my(f = factor(n)); sum(k=1, #f~, f[k,2]*2^primepi(f[k,1]))/2; \\ Michel Marcus, Oct 10 2016
-
\\ The following program reconstructs terms (e.g. for checking purposes) from the factorization file prepared by Hans Havermann:
v048675sigs = readvec("a048675.txt");
A048675(n) = if(n<=2,n-1,my(prsig=v048675sigs[n],ps=prsig[1],es=prsig[2]); prod(i=1,#ps,ps[i]^es[i])); \\ Antti Karttunen, Feb 02 2020
-
from sympy import factorint, primepi
def a(n):
if n==1: return 0
f=factorint(n)
return sum([f[i]*2**(primepi(i) - 1) for i in f])
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jun 19 2017
A018819
Binary partition function: number of partitions of n into powers of 2.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 202, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598, 692, 692, 786, 786, 900, 900, 1014, 1014, 1154, 1154, 1294, 1294
Offset: 0
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 10*x^8 + ...
a(4) = 4: the partitions are 4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
a(7) = 6: the partitions are 4 + 2 + 1, 4 + 1 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.
From _Joerg Arndt_, Dec 17 2012: (Start)
The a(10) = 14 binary partitions of 10 are (in lexicographic order)
[ 1] [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 2 1 1 1 1 1 1 1 1 ]
[ 3] [ 2 2 1 1 1 1 1 1 ]
[ 4] [ 2 2 2 1 1 1 1 ]
[ 5] [ 2 2 2 2 1 1 ]
[ 6] [ 2 2 2 2 2 ]
[ 7] [ 4 1 1 1 1 1 1 ]
[ 8] [ 4 2 1 1 1 1 ]
[ 9] [ 4 2 2 1 1 ]
[10] [ 4 2 2 2 ]
[11] [ 4 4 1 1 ]
[12] [ 4 4 2 ]
[13] [ 8 1 1 ]
[14] [ 8 2 ]
The a(11) = 14 binary partitions of 11 are obtained by appending 1 to each partition in the list.
The a(10) = 14 non-squashing partitions of 10 are (in lexicographic order)
[ 1] [ 6 3 1 1 ]
[ 2] [ 6 3 2 ]
[ 3] [ 6 4 1 ]
[ 4] [ 6 5 ]
[ 5] [ 7 2 1 1 ]
[ 6] [ 7 2 2 ]
[ 7] [ 7 3 1 ]
[ 8] [ 7 4 ]
[ 9] [ 8 2 1 ]
[10] [ 8 3 ]
[11] [ 9 1 1 ]
[12] [ 9 2 ]
[13] [ 10 1 ]
[14] [ 11 ]
The a(11) = 14 non-squashing partitions of 11 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _David V. Feldman_, Jan 29 2020: (Start)
The a(10) = 14 non-borrowing partitions of 10 are (in lexicographic order)
[ 1] [1 1 1 1 1 1 1 1 1 1]
[ 2] [2 2 2 2 2]
[ 3] [3 1 1 1 1 1 1 1]
[ 4] [3 3 1 1 1 1]
[ 5] [3 3 2 2]
[ 6] [3 3 3 1]
[ 7] [5 1 1 1 1 1]
[ 8] [5 5]
[ 9] [6 2 2]
[10] [6 4]
[11] [7 1 1 1]
[12] [7 3]
[13] [9 1]
[14] [10]
The a(11) = 14 non-borrowing partitions of 11 are obtained either by adding 1 to the first even part in each partition (if any) or else appending a 1 after the last part.
(End)
For example, the five partitions of 4, written in nonincreasing order, are [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]. The last four satisfy the condition, and a(4) = 4. The Maple program below verifies this for small values of n.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Max Alekseyev and Franklin T. Adams-Watters, Two proofs of an observation of Vladeta Jovovic
- Giedrius Alkauskas, Generalization of the Rodseth-Gupta theorem on binary partitions, Lithuanian Math. J., 43 (2) (2003), 103-110.
- Giedrius Alkauskas, Congruence Properties of the Function that Counts Compositions into Powers of 2 , J. Int. Seq. 13 (2010), 10.5.3.
- Joerg Arndt, Matters Computational (The Fxtbook), section 38.1, p.729.
- Scott M. Bailey and Donald M. Larson, The A(1)-module structure of the homology of Brown-Gitler spectra, arXiv:2107.01316 [math.AT], 2021.
- Valentin P. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.
- Philippe Biane, Laver tables and combinatorics, arXiv:1810.00548 [math.CO], 2018. Mentions this sequence.
- Peter J. Cameron, Firdous Ee Jannat, Rajat Kanti Nath, and Reza Sharafdini, A survey on conjugacy class graphs of groups, arXiv:2403.09423 [math.GR], 2024.
- Karl Dilcher and Larry Ericksen, Polynomial Analogues of Restricted b-ary Partition Functions, J. Int. Seq., Vol. 22 (2019), Article 19.3.2.
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 48, 581.
- Maciej Gawron, Piotr Miska and Maciej Ulas, Arithmetic properties of coefficients of power series expansion of Prod_{n>=0} (1-x^(2^n))^t, arXiv:1703.01955 [math.NT], 2017.
- Michael D. Hirschhorn and James A. Sellers, A different view of m-ary partitions, Australasian J. Combin., vol.30 (2004), 193-196.
- Jonathan Jordan and Richard Southwell, Further Properties of Reproducing Graphs, Applied Mathematics, Vol. 1 No. 5, 2010, pp. 344-350. doi: 10.4236/am.2010.15045. - From _N. J. A. Sloane_, Feb 03 2013
- Yasuyuki Kachi and Pavlos Tzermias, On the m-ary partition numbers, Algebra and Discrete Mathematics, Volume 19 (2015). Number 1, pp. 67-76.
- Matjaž Konvalinka and Igor Pak, Cayley compositions, partitions, polytopes, and geometric bijections, Journal of Combinatorial Theory, Series A, Volume 123, Issue 1, April 2014, Pages 86-91; see also DOI link. - From _N. J. A. Sloane_, Dec 22 2012
- Apisit Pakapongpun and Thomas Ward, Functorial Orbit counting, J. Int. Seq., 12 (2009) 09.2.4, example 25.
- Øystein J. Rodseth and James A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
- David Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (No. 8, 2002), 887-895; see p. 888.
- N. J. A. Sloane and James A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
- N. J. A. Sloane and James A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
A000123 is the main entry for the binary partition function and gives many more properties and references.
Cf.
A115625 (labeled binary partitions),
A115626 (labeled non-squashing partitions).
Cf.
A023893,
A062051,
A105420,
A131995,
A040039,
A018819,
A088567,
A089054,
A115361,
A168261,
A171238,
A179051,
A008619.
A118462 lists binary ranks of strict integer partitions, row sums
A372888.
A372890 adds up binary ranks of integer partitions.
-
a018819 n = a018819_list !! n
a018819_list = 1 : f (tail a008619_list) where
f (x:xs) = (sum $ take x a018819_list) : f xs
-- Reinhard Zumkeller, Jan 28 2012
-
import Data.List (intersperse)
a018819 = (a018819_list !!)
a018819_list = 1 : 1 : (<*>) (zipWith (+)) (intersperse 0) (tail a018819_list)
-- Johan Wiltink, Nov 08 2018
-
with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
# while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
if j=nr then t:=t+1;fi od; a[n]:=t; od; # John McKay
-
max = 59; a[0] = a[1] = 1; a[n_?OddQ] := a[n] = a[n-1]; a[n_?EvenQ] := a[n] = a[n-1] + a[n/2]; Table[a[n], {n, 0, max}]
(* or *) CoefficientList[Series[1/Product[(1-x^(2^j)), {j, 0, Log[2, max] // Ceiling}], {x, 0, max}], x] (* Jean-François Alcover, May 17 2011, updated Feb 17 2014 *)
a[ n_] := If[n<1, Boole[n==0], a[n] = a[n-1] + If[EvenQ@n, a[Quotient[n,2]], 0]]; (* Michael Somos, May 04 2022 *)
Table[Count[IntegerPartitions[n],?(AllTrue[Log2[#],IntegerQ]&)],{n,0,60}] (* _Harvey P. Dale, Jun 20 2024 *)
-
{ n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*2)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } /* Jon Perry */
-
{a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) / (1 - x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
-
{a(n) = if( n<1, n==0, if( n%2, a(n-1), a(n/2)+a(n-1)))}; /* Michael Somos, Aug 25 2003 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A018819(n): return 1 if n == 0 else A018819(n-1) + (0 if n % 2 else A018819(n//2)) # Chai Wah Wu, Jan 18 2022
A372689
Positive integers whose binary indices (positions of ones in reversed binary expansion) sum to a prime number.
Original entry on oeis.org
2, 3, 4, 6, 9, 11, 12, 16, 18, 23, 26, 29, 33, 38, 41, 43, 44, 48, 50, 55, 58, 61, 64, 69, 71, 72, 74, 79, 81, 86, 89, 91, 92, 96, 101, 103, 104, 106, 111, 113, 118, 121, 131, 132, 134, 137, 142, 144, 149, 151, 152, 154, 159, 163, 164, 166, 169, 174, 176, 181
Offset: 1
The terms together with their binary expansions and binary indices begin:
2: 10 ~ {2}
3: 11 ~ {1,2}
4: 100 ~ {3}
6: 110 ~ {2,3}
9: 1001 ~ {1,4}
11: 1011 ~ {1,2,4}
12: 1100 ~ {3,4}
16: 10000 ~ {5}
18: 10010 ~ {2,5}
23: 10111 ~ {1,2,3,5}
26: 11010 ~ {2,4,5}
29: 11101 ~ {1,3,4,5}
33: 100001 ~ {1,6}
38: 100110 ~ {2,3,6}
41: 101001 ~ {1,4,6}
43: 101011 ~ {1,2,4,6}
44: 101100 ~ {3,4,6}
48: 110000 ~ {5,6}
50: 110010 ~ {2,5,6}
55: 110111 ~ {1,2,3,5,6}
58: 111010 ~ {2,4,5,6}
61: 111101 ~ {1,3,4,5,6}
Numbers k such that
A029931(k) is prime.
Union of prime-indexed rows of
A118462.
For prime indices instead of binary indices we have
A316091.
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Binary indices:
A372885
Prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
Original entry on oeis.org
2, 3, 11, 23, 29, 41, 43, 61, 71, 79, 89, 101, 103, 113, 131, 137, 149, 151, 163, 181, 191, 197, 211, 239, 269, 271, 281, 293, 307, 331, 349, 353, 373, 383, 401, 433, 457, 491, 503, 509, 523, 541, 547, 593, 641, 683, 701, 709, 743, 751, 761, 773, 827, 863, 887
Offset: 1
The binary indices of 89 are {1,4,5,7}, with sum 17, which is prime, so 89 is in the sequence.
The terms together with their binary expansions and binary indices begin:
2: 10 ~ {2}
3: 11 ~ {1,2}
11: 1011 ~ {1,2,4}
23: 10111 ~ {1,2,3,5}
29: 11101 ~ {1,3,4,5}
41: 101001 ~ {1,4,6}
43: 101011 ~ {1,2,4,6}
61: 111101 ~ {1,3,4,5,6}
71: 1000111 ~ {1,2,3,7}
79: 1001111 ~ {1,2,3,4,7}
89: 1011001 ~ {1,4,5,7}
101: 1100101 ~ {1,3,6,7}
103: 1100111 ~ {1,2,3,6,7}
113: 1110001 ~ {1,5,6,7}
131: 10000011 ~ {1,2,8}
137: 10001001 ~ {1,4,8}
149: 10010101 ~ {1,3,5,8}
151: 10010111 ~ {1,2,3,5,8}
163: 10100011 ~ {1,2,6,8}
181: 10110101 ~ {1,3,5,6,8}
191: 10111111 ~ {1,2,3,4,5,6,8}
197: 11000101 ~ {1,3,7,8}
For prime instead of binary indices we have
A006450, prime case of
A316091.
Prime numbers p such that
A029931(p) is also prime.
The indices of these primes are
A372886.
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372688 counts partitions of prime binary rank, with Heinz numbers
A277319.
Binary indices:
-
filter:= proc(p)
local L,i,t;
L:= convert(p,base,2);
isprime(add(i*L[i],i=1..nops(L)))
end proc:
select(filter, [seq(ithprime(i),i=1..200)]); # Robert Israel, Jun 19 2025
-
Select[Range[100],PrimeQ[#] && PrimeQ[Total[First/@Position[Reverse[IntegerDigits[#,2]],1]]]&]
A372886
Indices of prime numbers whose binary indices (positions of ones in reversed binary expansion) sum to another prime number.
Original entry on oeis.org
1, 2, 5, 9, 10, 13, 14, 18, 20, 22, 24, 26, 27, 30, 32, 33, 35, 36, 38, 42, 43, 45, 47, 52, 57, 58, 60, 62, 63, 67, 70, 71, 74, 76, 79, 84, 88, 94, 96, 97, 99, 100, 101, 108, 116, 124, 126, 127, 132, 133, 135, 137, 144, 150, 154, 156, 160, 161, 162, 164, 172
Offset: 1
The binary indices of 89 = prime(24) are {1,4,5,7}, with sum 17, which is prime, so 24 is in the sequence.
Numbers k such that
A029931(prime(k)) is prime.
Indices of primes that belong to
A372689.
The indexed prime numbers themselves are
A372885.
Binary indices:
A372687 counts strict partitions of prime binary rank, counted by
A372851.
A372688 counts partitions of prime binary rank, with Heinz numbers
A277319.
-
filter:= proc(p)
local L,i,t;
L:= convert(p,base,2);
isprime(add(i*L[i],i=1..nops(L)))
end proc:
select(t -> filter(ithprime(t)), [$1..1000]); # Robert Israel, Jun 19 2025
-
Select[Range[100],PrimeQ[Total[First /@ Position[Reverse[IntegerDigits[Prime[#],2]],1]]]&]
A372687
Number of prime numbers whose binary indices sum to n. Number of strict integer partitions y of n such that Sum_i 2^(y_i-1) is prime.
Original entry on oeis.org
0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 3, 3, 1, 4, 1, 6, 5, 8, 4, 12, 8, 12, 7, 20, 8, 16, 17, 27, 19, 38, 19, 46, 33, 38, 49, 65, 47, 67, 83, 92, 94, 113, 103, 130, 146, 127, 215, 224, 176, 234, 306, 270, 357, 383, 339, 393, 537, 540, 597, 683, 576, 798, 1026, 830, 1157
Offset: 0
The a(2) = 1 through a(17) = 8 prime numbers:
2 3 5 . 17 11 19 . 257 131 73 137 97 521 4099 1031
7 13 67 41 71 263 2053 523
37 23 43 139 1033 269
29 83 193 163
53 47 149
31 101
89
79
The a(2) = 1 through a(11) = 3 strict partitions:
(2) (2,1) (3,1) . (5,1) (4,2,1) (4,3,1) . (9,1) (6,4,1)
(3,2,1) (5,2,1) (6,3,1) (8,2,1)
(7,2,1) (5,3,2,1)
For all positive integers (not just prime) we get
A000009.
Number of prime numbers p with
A029931(p) = n.
Number of times n appears in
A372429.
Number of rows of
A372471 with sum n.
These (strict) partitions have Heinz numbers
A372851.
A014499 lists binary indices of prime numbers.
A096111 gives product of binary indices.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Cf.
A000040,
A005940,
A023506,
A029837,
A035100,
A071814,
A230877,
A231204,
A359359,
A372436,
A372441.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&PrimeQ[Total[2^#]/2]&]],{n,0,30}]
A372850
Numbers whose distinct prime indices are the binary indices of some prime number.
Original entry on oeis.org
3, 6, 9, 10, 12, 18, 20, 22, 24, 27, 30, 36, 40, 42, 44, 46, 48, 50, 54, 60, 66, 70, 72, 80, 81, 84, 88, 90, 92, 96, 100, 102, 108, 114, 118, 120, 126, 130, 132, 140, 144, 150, 160, 162, 168, 176, 180, 182, 184, 192, 198, 200, 204, 216, 228, 236, 238, 240, 242
Offset: 1
The distinct prime indices of 45 are {2,3}, which are the binary indices of 6, which is not prime, so 45 is not in the sequence.
The distinct prime indices of 60 are {1,2,3}, which are the binary indices of 7, which is prime, so 60 is in the sequence.
The terms together with their prime indices begin:
3: {2}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
22: {1,5}
24: {1,1,1,2}
27: {2,2,2}
30: {1,2,3}
36: {1,1,2,2}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
46: {1,9}
48: {1,1,1,1,2}
50: {1,3,3}
54: {1,2,2,2}
60: {1,1,2,3}
66: {1,2,5}
70: {1,3,4}
For prime indices with multiplicity we have
A277319, counted by
A372688.
Partitions of this type are counted by
A372887.
A014499 lists binary indices of prime numbers.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Cf.
A000040,
A005940,
A023506,
A029837,
A035100,
A071814,
A096111,
A372429,
A372436,
A372441,
A372471,
A372689.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],PrimeQ[Total[2^(Union[prix[#]]-1)]]&]
A372851
Squarefree numbers whose prime indices are the binary indices of some prime number.
Original entry on oeis.org
3, 6, 10, 22, 30, 42, 46, 66, 70, 102, 114, 118, 130, 182, 238, 246, 266, 318, 330, 354, 370, 402, 406, 434, 442, 510, 546, 646, 654, 690, 762, 770, 798, 930, 938, 946, 962, 986, 1066, 1102, 1122, 1178, 1218, 1222, 1246, 1258, 1334, 1378, 1430, 1482, 1578
Offset: 1
The prime indices of 70 are {1,3,4}, which are the binary indices of 13, which is prime, so 70 is in the sequence.
The prime indices of 15 are {2,3}, which are the binary indices of 6, which is not prime, so 15 is not in the sequence.
The terms together with their prime indices begin:
3: {2}
6: {1,2}
10: {1,3}
22: {1,5}
30: {1,2,3}
42: {1,2,4}
46: {1,9}
66: {1,2,5}
70: {1,3,4}
102: {1,2,7}
114: {1,2,8}
118: {1,17}
130: {1,3,6}
182: {1,4,6}
238: {1,4,7}
246: {1,2,13}
266: {1,4,8}
318: {1,2,16}
330: {1,2,3,5}
354: {1,2,17}
370: {1,3,12}
402: {1,2,19}
For odd instead of prime we have
A039956.
For even instead of prime we have
A056911.
Strict partitions of this type are counted by
A372687.
Non-strict partitions of this type are counted by
A372688, ranks
A277319.
A014499 lists binary indices of prime numbers.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Cf.
A000040,
A005940,
A025147,
A035100,
A071814,
A096111,
A096765,
A231204,
A372429,
A372471,
A372689.
A372887
Number of integer partitions of n whose distinct parts are the binary indices of some prime number.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 6, 8, 12, 14, 21, 29, 36, 48, 56, 74, 94, 123, 144, 195, 235, 301, 356, 456, 538, 679, 803, 997, 1189, 1467, 1716, 2103, 2488, 2968, 3517, 4185, 4907, 5834, 6850, 8032, 9459, 11073, 12933, 15130, 17652, 20480, 24011, 27851, 32344, 37520
Offset: 0
The partition y = (4,3,1,1) has distinct parts {1,3,4}, which are the binary indices of 13, which is prime, so y is counted under a(9).
The a(2) = 1 through a(9) = 14 partitions:
(2) (21) (22) (221) (51) (331) (431) (3321)
(31) (311) (222) (421) (521) (4221)
(211) (2111) (321) (511) (2222) (4311)
(2211) (2221) (3221) (5211)
(3111) (3211) (3311) (22221)
(21111) (22111) (4211) (32211)
(31111) (5111) (33111)
(211111) (22211) (42111)
(32111) (51111)
(221111) (222111)
(311111) (321111)
(2111111) (2211111)
(3111111)
(21111111)
These partitions have Heinz numbers
A372850.
A014499 lists binary indices of prime numbers.
A372689 lists numbers whose binary indices sum to a prime.
A372885 lists primes whose binary indices sum to a prime, indices
A372886.
Binary indices:
-
Table[Length[Select[IntegerPartitions[n], PrimeQ[Total[2^(Union[#]-1)]]&]],{n,0,30}]
A373120
Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 26, 33, 43, 55, 70, 89, 109, 136, 167, 206, 251, 306, 371, 445, 535, 639, 759, 904, 1069, 1262, 1489, 1747, 2047, 2390, 2784, 3237, 3754, 4350, 5027, 5798, 6680, 7671, 8808, 10091, 11543, 13190, 15040, 17128, 19477, 22118
Offset: 0
The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4, so a(4) = 3.
A118462 lists binary ranks of strict integer partitions, row sums
A372888.
A277905 groups all positive integers by binary rank of prime indices.
A372890 adds up binary ranks of integer partitions.
Showing 1-10 of 10 results.
Comments