A277905 Irregular table: Each row n (n >= 0) lists in ascending order all A018819(n) numbers k for which A048675(k) = n.
1, 2, 3, 4, 6, 8, 5, 9, 12, 16, 10, 18, 24, 32, 15, 20, 27, 36, 48, 64, 30, 40, 54, 72, 96, 128, 7, 25, 45, 60, 80, 81, 108, 144, 192, 256, 14, 50, 90, 120, 160, 162, 216, 288, 384, 512, 21, 28, 75, 100, 135, 180, 240, 243, 320, 324, 432, 576, 768, 1024, 42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048, 35, 63, 84, 112, 125, 225, 300, 400
Offset: 1
Examples
The irregular table begins as: row terms 0 1; 1 2; 2 3, 4; 3 6, 8; 4 5, 9, 12, 16; 5 10, 18, 24, 32; 6 15, 20, 27, 36, 48, 64; 7 30, 40, 54, 72, 96, 128; 8 7, 25, 45, 60, 80, 81, 108, 144, 192, 256; 9 14, 50, 90, 120, 160, 162, 216, 288, 384, 512; 10 21, 28, 75, 100, 135, 180, 240, 243, 320, 324, 432, 576, 768, 1024; 11 42, 56, 150, 200, 270, 360, 480, 486, 640, 648, 864, 1152, 1536, 2048; ...
Links
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Select[Range[0,2^k],Total[2^(prix[#]-1)]==k&],{k,0,10}] (* Gus Wiseman, May 25 2024 *)
-
Scheme
(definec (A277905 n) (A277905bi (A277903 n) (A277904 n))) (define (A277905bi row col) (let outloop ((k (A019565 row)) (col col)) (if (zero? col) k (let inloop ((j (+ 1 k))) (if (= (A048675 j) row) (outloop j (- col 1)) (inloop (+ 1 j))))))) ;; Very slow implementation. ;; Implementation based on a naive recurrence: (definec (A277905 n) (if (= 1 n) n (let ((maybe_next (A277896 (A277905 (- n 1))))) (if (not (zero? maybe_next)) maybe_next (A019565 (A277903 n))))))
Comments