cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001970 Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.

Original entry on oeis.org

1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of partitions of n, when for each k there are p(k) different copies of part k. E.g., let the parts be 1, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, ... Then the a(4) = 14 partitions of 4 are: 4 = 4a = 4b = ... = 4e = 3a+1 = 3b+1 = 3c+1 = 2a+2a = 2a+2b = 2b+2b = 2a+1 = 2b+1 = 1+1+1+1.
Equivalently (Cayley), a(n) = number of 2-dimensional partitions of n. E.g., for n = 4 we have:
4 31 3 22 2 211 21 2 2 1111 111 11 11 1
1 2 1 11 1 1 11 1 1
1 1 1
1
Also total number of different species of singularity for conjugate functions with n letters (Sylvester).
According to [Belmans], this sequence gives "[t]he number of Segre symbols for the intersection of two quadrics in a fixed dimension". - Eric M. Schmidt, Sep 02 2017
From Gus Wiseman, Jul 30 2022: (Start)
Also the number of non-isomorphic multiset partitions of weight n with all constant blocks. The strict case is A089259. For example, non-isomorphic representatives of the a(1) = 1 through a(3) = 6 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
A000688 counts factorizations into prime powers.
A007716 counts non-isomorphic multiset partitions by weight.
A279784 counts twice-partitions of type PPR, factorizations A295935.
Constant partitions are ranked by prime-powers: A000961, A023894, A054685, A246655, A355743.
(End)

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - _Gus Wiseman_, Dec 19 2016
		

References

  • A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
  • V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
  • J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.

Crossrefs

Related to A001383 via generating function.
The multiplicative version (factorizations) is A050336.
The ordered version (sequences of partitions) is A055887.
Row-sums of A061260.
Main diagonal of A055885.
We have A271619(n) <= a(n) <= A063834(n).
Column k=3 of A290353.
The strict case is A316980.
Cf. A089300.

Programs

  • Haskell
    Following Vladeta Jovovic:
    a001970 n = a001970_list !! (n-1)
    a001970_list = 1 : f 1 [1] where
       f x ys = y : f (x + 1) (y : ys) where
                y = sum (zipWith (*) ys a061259_list) `div` x
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U,card >= 1), U=Set(Z,card >=1)},unlabeled];
    # second Maple program:
    with(numtheory): with(combinat):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 19 2016
  • Mathematica
    m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import npartitions, divisors
    @cacheit
    def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
    [a(n) for n in range(51)]  # Indranil Ghosh, Aug 19 2017, after Maple code
    # (Sage) # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, 1)
    a = EulerTransform(EulerTransform(b))
    print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022

Formula

G.f.: Product_{k >= 1} 1/(1-x^k)^p(k), where p(k) = number of partitions of k = A000041. [Cayley]
a(n) = (1/n)*Sum_{k = 1..n} a(n-k)*b(k), n > 1, a(0) = 1, b(k) = Sum_{d|k} d*numbpart(d), where numbpart(d) = number of partitions of d, cf. A061259. - Vladeta Jovovic, Apr 21 2001
Logarithmic derivative yields A061259 (equivalent to above formula from Vladeta Jovovic). - Paul D. Hanna, Sep 05 2012
a(n) = Sum_{k=1..A000041(n)} A001055(A215366(n,k)) = number of factorizations of Heinz numbers of integer partitions of n. - Gus Wiseman, Dec 19 2016
a(n) = |{m>=1 : n = Sum_{k=1..A001222(m)} A056239(A112798(m,k)+1)}| = number of normalized twice-prime-factored multiset partitions (see A275024) whose total sum of parts is n. - Gus Wiseman, Dec 19 2016

Extensions

Additional comments from Valery A. Liskovets
Sylvester references from Barry Cipra, Oct 07 2003

A008763 Expansion of g.f.: x^4/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061, 2187, 2304, 2439
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X 2 square partitions of n.
1/((1-x^2)*(1-x^4)^2*(1-x^6)) is the Molien series for 4-dimensional representation of a certain group of order 192 [Nebe, Rains, Sloane, Chap. 7].
Number of ways of writing n as n = p+q+r+s so that p >= q, p >= r, q >= s, r >= s with p, q, r, s >= 1. That is, we can partition n as
pq
rs
with p >= q, p >= r, q >= s, r >= s.
The coefficient of s(2n) in s(n,n) * s(n,n) * s(n,n) * s(n,n) is a(n+4), where s(n) is the Schur function corresponding to the trivial representation, s(n,n) is a Schur function corresponding to the two row partition and * represents the inner or Kronecker product of symmetric functions. - Mike Zabrocki, Dec 22 2005
Let F() be the Fibonacci sequence A000045. Let f([x, y, z, w]) = F(x) * F(y) * F(z) * F(w). Let N([x, y, z, w]) = x^2 + y^2 + z^2 + w^2. Let Q(k) = set of all ordered quadruples of integers [x, y, z, w] such that 1 <= x <= y <= z <= w and N([x, y, z, w]) = k. Let P(n) = set of all unordered triples {q1, q2, q3} of elements of some Q(k) such that max(w1, w2, w3) = n and f(q1) + f(q2) = f(q3). Then a(n-1) is the number of elements of P(n). - Michael Somos, Jan 21 2015
Number of partitions of 2n+2 into 4 parts with alternating parity from smallest to largest (or vice versa). - Wesley Ivan Hurt, Jan 19 2021

Examples

			a(7) = 4:
41 32 31 22
11 11 21 21
G.f. = x^4 + x^5 + 3*x^6 + 4*x^7 + 7*x^8 + 9*x^9 + 14*x^10 + 17*x^11 + ...
a(5-1) = 1 because P(5) has only one triple {[1,1,1,5], [2,2,2,4], [1,3,3,3]} of elements from Q(28) where f([1,1,1,5]) = 5, f([2,2,2,4]) = 3, f([1,3,3,3]) = 8, and 5 + 3 = 8. - _Michael Somos_, Jan 21 2015
a(6-1) = 1 because P(6) has only one triple {[1,1,2,6], [2,2,3,5], [1,3,4,4]} of elements from Q(42) where f([1,1,2,6]) = 8, f([2,2,3,5]) = 10, f([1,3,4,4]) = 18 and 8 + 10 = 18. - _Michael Somos_, Jan 21 2015
a(7-1) = 3 because P(7) has three triples. The triple {[1,1,1,7], [2,4,4,4], [3,3,3,5]} from Q(52) where f([1,1,1,7]) = 13, f([2,4,4,4]) = 27, f([3,3,3,5]) = 40 and 13 + 27 = 40. The triple {[1,2,2,7], [2,3,3,6], [1,4,4,5]} from Q(58) where f([1,2,2,7]) = 13, f([2,3,3,6]) = 32, f([1,4,4,5]) = 45 and 13 + 32 = 45. The triple {[1,1,3,7], [2,2,4,6], [1,3,5,5]} from Q(60) where f([1,1,3,7]) = 26, f([2,2,4,6]) = 24, f([1,3,5,5]) = 50 and 26 + 24 = 50. - _Michael Somos_, Jan 21 2015
		

References

  • G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
  • G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis VIII: Plane partition diamonds, Advances Applied Math., 27 (2001), 231-242 (Cor. 2.1, n=1).
  • S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.

Crossrefs

See A266769 for a version without the four leading zeros.
First differences of A097701.

Programs

  • GAP
    a:=[0,0,0,0,1,1,3,4];; for n in [9..60] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]-2*a[n-4]-a[n-5]+2*a[n-6]+a[n-7]-a[n-8]; od; a; # G. C. Greubel, Sep 10 2019
  • Magma
    K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; H:=MatrixGroup<4,K|q1,q2,h,p1>; MolienSeries(H);
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0] cat Coefficients(R!( x^4/((1-x)*(1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 10 2019
    
  • Maple
    a:= n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [1,2,-1,-2,-1,2,1,-1][i] else 0 fi)^n)[1,5]: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[x^4/((1-x)*(1-x^2)^2*(1-x^3)), {x,0,60}], x] (* Jean-François Alcover, Mar 30 2011 *)
    LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{0,0,0,0,1,1,3,4},60] (* Harvey P. Dale, Mar 04 2012 *)
    a[ n_]:= Quotient[9(n+1)(-1)^n +2n^3 -9n +65, 144]; (* Michael Somos, Jan 21 2015 *)
    a[ n_]:= Sign[n] SeriesCoefficient[ x^4/((1-x)(1-x^2)^2(1-x^3)), {x, 0, Abs@n}]; (* Michael Somos, Jan 21 2015 *)
  • PARI
    {a(n) = (9*(n+1)*(-1)^n + 2*n^3 - 9*n + 65) \ 144}; /* Michael Somos, Jan 21 2015 */
    
  • PARI
    a(n)=([0,1,0,0,0,0,0,0; 0,0,1,0,0,0,0,0; 0,0,0,1,0,0,0,0; 0,0,0,0,1,0,0,0; 0,0,0,0,0,1,0,0; 0,0,0,0,0,0,1,0; 0,0,0,0,0,0,0,1; -1,1,2,-1,-2,-1,2,1]^n*[0;0;0;0;1;1;3;4])[1,1] \\ Charles R Greathouse IV, Feb 06 2017
    
  • Sage
    def AA008763_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^4/((1-x)*(1-x^2)^2*(1-x^3))).list()
    AA008763_list(60) # G. C. Greubel, Sep 10 2019
    

Formula

Let f4(n) = number of partitions n = p+q+r+s into exactly 4 parts, with p >= q >= r >= s >= 1 (see A026810, A001400) and let g4(n) be the number with q > r (so that g4(n) = f4(n-2)). Then a(n) = f4(n) + g4(n).
a(n) = (1/144)*( 2*n^3 + 9*n*((-1)^n - 1) - 16*((n is 2 mod 3) - (n is 1 mod 3)) ).
a(n) = (1/72)*(n+3)*(n+2)*(n+1)-(1/12)*(n+2)*(n+1)+(5/144)*(n+1)+(1/16)*(n+1)*(-1)^n+(1/16)*(-1)^(n+1)+(7/144)+(2*sqrt(3)/27)*sin(2*Pi*n/3). - Richard Choulet, Nov 27 2008
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8), n>7. - Harvey P. Dale, Mar 04 2012
a(n) = floor((9*(n+1)*(-1)^n + 2*n^3 - 9*n + 65)/144). - Tani Akinari, Nov 06 2012
a(n+1) - a(n) = A008731(n-3). - R. J. Mathar, Aug 06 2013
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 21 2015
Euler transform of length 3 sequence [1, 2, 1]. - Michael Somos, Jun 26 2017

Extensions

Entry revised Dec 25 2003

A089299 Number of square plane partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 41, 57, 78, 108, 146, 202, 274, 375, 509, 690, 929, 1255, 1679, 2246, 2991, 3979, 5266, 6971, 9187, 12104, 15898, 20870, 27322, 35762, 46690, 60927, 79348, 103270, 134138, 174108, 225576, 291990, 377320, 487083
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2003

Keywords

Comments

Number of ways of writing n as a sum p(1,1) + p(1,2) + ... + p(1,k) + p(2,1) + ... + p(2,k) + ... + p(k,1) + ... + p(k,k) for some k so that in the square array {p(i,j)} the numbers are nonincreasing along rows and columns. All the p(i,j) are >= 1.

Examples

			a(7) = 5:
7 41 32 31 22
. 11 11 21 21
a(10) = 16 from {{10}}, {{3, 2}, {3, 2}}, {{3, 3}, {2, 2}}, {{3, 3}, {3, 1}}, {{4, 1}, {4, 1}}, {{4, 2}, {2, 2}}, {{4, 2}, {3, 1}}, {{4, 3}, {2, 1}}, {{4, 4}, {1, 1}}, {{5, 1}, {3, 1}}, {{5, 2}, {2, 1}}, {{5, 3}, {1, 1}}, {{6, 1}, {2, 1}}, {{6, 2}, {1, 1}}, {{7, 1}, {1, 1}}, {{2, 1, 1}, {1, 1, 1}, {1, 1, 1}}
From _Gus Wiseman_, Jan 16 2019: (Start)
The a(10) = 16 square plane partitions:
  [ten]
.
  [32] [33] [33] [41] [42] [42] [43] [44] [51] [52] [53] [61] [62] [71]
  [32] [22] [31] [41] [22] [31] [21] [11] [31] [21] [11] [21] [11] [11]
.
  [211]
  [111]
  [111]
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#,{Length[ptn]}]&/@ptn]],And@@OrderedQ/@Transpose[#]&]],{ptn,IntegerPartitions[n]}],{n,30}] (* Gus Wiseman, Jan 16 2019 *)

Formula

G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..2k-1} (1-x^j)^min(j,2k-j). - Franklin T. Adams-Watters, Jun 14 2006

Extensions

Corrected and extended by Wouter Meeussen, Dec 30 2003
a(21)-a(25) from John W. Layman, Jan 02 2004
More terms from Franklin T. Adams-Watters, Jun 14 2006
Name edited by Gus Wiseman, Jan 16 2019

A089300 Number of planar partitions of n (A000219) that are non-squashing along rows and down columns (cf. A018819).

Original entry on oeis.org

1, 1, 3, 4, 9, 13, 25, 33, 56, 76, 122, 170, 264, 360, 538, 707, 1002, 1332, 1853, 2409, 3294
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2003

Keywords

Examples

			E.g. a(4) = 9:
4.31.3.22.2.211.21..2..11
.....1....2.....1...1..11
....................1....
		

Crossrefs

Extensions

More terms from Wouter Meeussen, Dec 30 2003
Showing 1-4 of 4 results.