cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A018819 Binary partition function: number of partitions of n into powers of 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166, 166, 202, 202, 238, 238, 284, 284, 330, 330, 390, 390, 450, 450, 524, 524, 598, 598, 692, 692, 786, 786, 900, 900, 1014, 1014, 1154, 1154, 1294, 1294
Offset: 0

Views

Author

Keywords

Comments

First differences of A000123; also A000123 with terms repeated. See the relevant proof that follows the first formula below.
Among these partitions there is exactly one partition with all distinct terms, as every number can be expressed as the sum of the distinct powers of 2.
Euler transform of A036987 with offset 1.
a(n) is the number of "non-squashing" partitions of n, that is, partitions n = p_1 + p_2 + ... + p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k. - N. J. A. Sloane, Nov 30 2003
Normally the OEIS does not include sequences like this where every term is repeated, but an exception was made for this one because of its importance. The unrepeated sequence A000123 is the main entry.
Number of different partial sums from 1 + [1, *2] + [1, *2] + ..., where [1, *2] means we can either add 1 or multiply by 2. E.g., a(6) = 6 because we have 6 = 1 + 1 + 1 + 1 + 1 + 1 = (1+1) * 2 + 1 + 1 = 1 * 2 * 2 + 1 + 1 = (1+1+1) * 2 = 1 * 2 + 1 + 1 + 1 + 1 = (1*2+1) * 2 where the connection is defined via expanding each bracket; e.g., this is 6 = 1 + 1 + 1 + 1 + 1 + 1 = 2 + 2 + 1 + 1 = 4 + 1 + 1 = 2 + 2 + 2 = 2 + 1 + 1 + 1 + 1 = 4 + 2. - Jon Perry, Jan 01 2004
Number of partitions p of n such that the number of compositions generated by p is odd. For proof see the Alekseyev and Adams-Watters link. - Vladeta Jovovic, Aug 06 2007
Differs from A008645 first at a(64). - R. J. Mathar, May 28 2008
Appears to be row sums of A155077. - Mats Granvik, Jan 19 2009
Number of partitions (p_1, p_2, ..., p_k) of n, with p_1 >= p_2 >= ... >= p_k, such that for each i, p_i >= p_{i+1} + ... + p_k. - John MCKAY (mckay(AT)encs.concordia.ca), Mar 06 2009 (these are the "non-squashing" partitions as nonincreasing lists).
Equals rightmost diagonal of triangle of A168261. Starting with offset 1 = eigensequence of triangle A115361 and row sums of triangle A168261. - Gary W. Adamson, Nov 21 2009
Equals convolution square root of A171238: (1, 2, 5, 8, 16, 24, 40, 56, 88, ...). - Gary W. Adamson, Dec 05 2009
Let B = the n-th convolution power of the sequence and C = the aerated variant of B. It appears that B/C = the binomial sequence beginning (1, n, ...). Example: Third convolution power of the sequence is (1, 3, 9, 19, 42, 78, 146, ...), with C = (1, 0, 3, 0, 9, 0, 19, ...). Then B/C = (1, 3, 6, 10, 15, 21, ...). - Gary W. Adamson, Aug 15 2016
From Gary W. Adamson, Sep 08 2016: (Start)
The limit of the matrix power M^k as n-->inf results in a single column vector equal to the sequence, where M is the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
a(n) is the number of "non-borrowing" partitions of n, meaning binary subtraction of a smaller part from a larger part will never require place-value borrowing. - David V. Feldman, Jan 29 2020
From Gus Wiseman, May 25 2024: (Start)
Also the number of multisets of positive integers whose binary rank is n, where the binary rank of a multiset m is given by Sum_i 2^(m_i-1). For example, the a(1) = 1 through a(8) = 10 multisets are:
{1} {2} {12} {3} {13} {23} {123} {4}
{11} {111} {22} {122} {113} {1113} {33}
{112} {1112} {222} {1222} {223}
{1111} {11111} {1122} {11122} {1123}
{11112} {111112} {2222}
{111111} {1111111} {11113}
{11222}
{111122}
{1111112}
{11111111}
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 6*x^6 + 6*x^7 + 10*x^8 + ...
a(4) = 4: the partitions are 4, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.
a(7) = 6: the partitions are 4 + 2 + 1, 4 + 1 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.
From _Joerg Arndt_, Dec 17 2012: (Start)
The a(10) = 14 binary partitions of 10 are (in lexicographic order)
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 1 1 1 1 ]
[ 3]  [ 2 2 1 1 1 1 1 1 ]
[ 4]  [ 2 2 2 1 1 1 1 ]
[ 5]  [ 2 2 2 2 1 1 ]
[ 6]  [ 2 2 2 2 2 ]
[ 7]  [ 4 1 1 1 1 1 1 ]
[ 8]  [ 4 2 1 1 1 1 ]
[ 9]  [ 4 2 2 1 1 ]
[10]  [ 4 2 2 2 ]
[11]  [ 4 4 1 1 ]
[12]  [ 4 4 2 ]
[13]  [ 8 1 1 ]
[14]  [ 8 2 ]
The a(11) = 14 binary partitions of 11 are obtained by appending 1 to each partition in the list.
The a(10) = 14 non-squashing partitions of 10 are (in lexicographic order)
[ 1]  [ 6 3 1 1 ]
[ 2]  [ 6 3 2 ]
[ 3]  [ 6 4 1 ]
[ 4]  [ 6 5 ]
[ 5]  [ 7 2 1 1 ]
[ 6]  [ 7 2 2 ]
[ 7]  [ 7 3 1 ]
[ 8]  [ 7 4 ]
[ 9]  [ 8 2 1 ]
[10]  [ 8 3 ]
[11]  [ 9 1 1 ]
[12]  [ 9 2 ]
[13]  [ 10 1 ]
[14]  [ 11 ]
The a(11) = 14 non-squashing partitions of 11 are obtained by adding 1 to the first part in each partition in the list.
(End)
From _David V. Feldman_, Jan 29 2020: (Start)
The a(10) = 14 non-borrowing partitions of 10 are (in lexicographic order)
[ 1] [1 1 1 1 1 1 1 1 1 1]
[ 2] [2 2 2 2 2]
[ 3] [3 1 1 1 1 1 1 1]
[ 4] [3 3 1 1 1 1]
[ 5] [3 3 2 2]
[ 6] [3 3 3 1]
[ 7] [5 1 1 1 1 1]
[ 8] [5 5]
[ 9] [6 2 2]
[10] [6 4]
[11] [7 1 1 1]
[12] [7 3]
[13] [9 1]
[14] [10]
The a(11) = 14 non-borrowing partitions of 11 are obtained either by adding 1 to the first even part in each partition (if any) or else appending a 1 after the last part.
(End)
For example, the five partitions of 4, written in nonincreasing order, are [1, 1, 1, 1], [2, 1, 1], [2, 2], [3, 1], [4]. The last four satisfy the condition, and a(4) = 4. The Maple program below verifies this for small values of n.
		

Crossrefs

A000123 is the main entry for the binary partition function and gives many more properties and references.
Cf. A115625 (labeled binary partitions), A115626 (labeled non-squashing partitions).
Convolution inverse of A106400.
Multiplicity of n in A048675, for distinct prime indices A087207.
Row lengths of A277905.
A118462 lists binary ranks of strict integer partitions, row sums A372888.
A372890 adds up binary ranks of integer partitions.

Programs

  • Haskell
    a018819 n = a018819_list !! n
    a018819_list = 1 : f (tail a008619_list) where
       f (x:xs) = (sum $ take x a018819_list) : f xs
    -- Reinhard Zumkeller, Jan 28 2012
    
  • Haskell
    import Data.List (intersperse)
    a018819 = (a018819_list !!)
    a018819_list = 1 : 1 : (<*>) (zipWith (+)) (intersperse 0) (tail a018819_list)
    -- Johan Wiltink, Nov 08 2018
    
  • Maple
    with(combinat); N:=8; a:=array(1..N); c:=array(1..N);
    for n from 1 to N do p:=partition(n); np:=nops(p); t:=0;
    for s to np do r:=p[s]; r:=sort(r,`>`); nr:=nops(r); j:=1;
    # while jsum(r[k],k=j+1..nr) do j:=j+1;od; # gives A040039
    while j= sum(r[k],k=j+1..nr) do j:=j+1;od; # gives A018819
    if j=nr then t:=t+1;fi od; a[n]:=t; od; # John McKay
  • Mathematica
    max = 59; a[0] = a[1] = 1; a[n_?OddQ] := a[n] = a[n-1]; a[n_?EvenQ] := a[n] = a[n-1] + a[n/2]; Table[a[n], {n, 0, max}]
    (* or *) CoefficientList[Series[1/Product[(1-x^(2^j)), {j, 0, Log[2, max] // Ceiling}], {x, 0, max}], x] (* Jean-François Alcover, May 17 2011, updated Feb 17 2014 *)
    a[ n_] := If[n<1, Boole[n==0], a[n] = a[n-1] + If[EvenQ@n, a[Quotient[n,2]], 0]]; (* Michael Somos, May 04 2022 *)
    Table[Count[IntegerPartitions[n],?(AllTrue[Log2[#],IntegerQ]&)],{n,0,60}] (* _Harvey P. Dale, Jun 20 2024 *)
  • PARI
    { n=15; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]*2)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } /* Jon Perry */
    
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) / (1 - x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, if( n%2, a(n-1), a(n/2)+a(n-1)))}; /* Michael Somos, Aug 25 2003 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A018819(n): return 1 if n == 0 else A018819(n-1) + (0 if n % 2 else A018819(n//2)) # Chai Wah Wu, Jan 18 2022

Formula

a(2m+1) = a(2m), a(2m) = a(2m-1) + a(m). Proof: If n is odd there is a part of size 1; removing it gives a partition of n - 1. If n is even either there is a part of size 1, whose removal gives a partition of n - 1, or else all parts have even sizes and dividing each part by 2 gives a partition of n/2.
G.f.: 1 / Product_{j>=0} (1-x^(2^j)).
a(n) = (1/n)*Sum_{k = 1..n} A038712(k)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
a(2*n) = a(2*n + 1) = A000123(n). - Michael Somos, Aug 25 2003
a(n) = 1 if n = 0, Sum_{j = 0..floor(n/2)} a(j) if n > 0. - David W. Wilson, Aug 16 2007
G.f. A(x) satisfies A(x^2) = (1-x) * A(x). - Michael Somos, Aug 25 2003
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*w - 2*u*v^2 + v^3. - Michael Somos, Apr 10 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6 * u1^3 - 3*u3*u2*u1^2 + 3*u3*u2^2*u1 - u3*u2^3. - Michael Somos, Oct 15 2006
G.f.: 1/( Sum_{n >= 0} x^evil(n) - x^odious(n) ), where evil(n) = A001969(n) and odious(n) = A000069(n). - Paul D. Hanna, Jan 23 2012
Let A(x) by the g.f. and B(x) = A(x^k), then 0 = B*((1-A)^k - (-A)^k) + (-A)^k, see fxtbook link. - Joerg Arndt, Dec 17 2012
G.f.: Product_{n>=0} (1+x^(2^n))^(n+1), see the fxtbook link. - Joerg Arndt, Feb 28 2014
G.f.: 1 + Sum_{i>=0} x^(2^i) / Product_{j=0..i} (1 - x^(2^j)). - Ilya Gutkovskiy, May 07 2017
Showing 1-1 of 1 results.