cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372695 Cubefull numbers that are not prime powers.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5488, 5832, 6912, 7776, 8000, 9261, 10000, 10125, 10368, 10648, 10976, 11664, 13824, 15552, 16000, 16875, 17496, 17576, 19208, 20000, 20736, 21296, 21952, 23328, 25000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
Proper subset of the following sequences: A001694, A036966, A126706, A286708.
Superset of A372841.
Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m).

Examples

			Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
    n      a(n)
  ------------------------
    1      216 = 2^3 * 3^3
    2      432 = 2^4 * 3^3
    3      648 = 2^3 * 3^4
    4      864 = 2^5 * 3^3
    5     1000 = 2^3 * 5^3
    6     1296 = 2^4 * 3^4
    7     1728 = 2^6 * 3^3
    8     1944 = 2^3 * 3^5
    9     2000 = 2^4 * 5^3
   10     2592 = 2^5 * 3^4
   11     2744 = 2^3 * 7^3
   12     3375 = 3^3 * 5^3
  ...
   43    27000 = 2^3 * 3^3 * 5^3
  ...
  587  9261000 = 2^3 * 3^3 * 5^3 * 7^3
		

Crossrefs

Programs

  • Mathematica
    nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372695(n):
        def f(x):
            c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Intersection of A036966 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024