A372695 Cubefull numbers that are not prime powers.
216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5488, 5832, 6912, 7776, 8000, 9261, 10000, 10125, 10368, 10648, 10976, 11664, 13824, 15552, 16000, 16875, 17496, 17576, 19208, 20000, 20736, 21296, 21952, 23328, 25000
Offset: 1
Keywords
Examples
Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4 n a(n) ------------------------ 1 216 = 2^3 * 3^3 2 432 = 2^4 * 3^3 3 648 = 2^3 * 3^4 4 864 = 2^5 * 3^3 5 1000 = 2^3 * 5^3 6 1296 = 2^4 * 3^4 7 1728 = 2^6 * 3^3 8 1944 = 2^3 * 3^5 9 2000 = 2^4 * 5^3 10 2592 = 2^5 * 3^4 11 2744 = 2^3 * 7^3 12 3375 = 3^3 * 5^3 ... 43 27000 = 2^3 * 3^3 * 5^3 ... 587 9261000 = 2^3 * 3^3 * 5^3 * 7^3
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
-
Python
from math import gcd from sympy import primepi, integer_nthroot, factorint def A372695(n): def f(x): c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())) for w in range(1,integer_nthroot(x,5)[0]+1): if all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): c -= integer_nthroot(z//y**4,3)[0] return c def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024
Formula
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024
Comments