A372722 Number T(n,k) of partitions of [n] having exactly k blocks of maximal size; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 36, 15, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 596, 175, 105, 0, 0, 0, 1, 0, 2809, 805, 420, 105, 0, 0, 0, 1, 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1, 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1, 0, 461748, 151371, 37730, 17325, 10395, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34. T(4,2) = 3: 12|34, 13|24, 14|23. T(4,3) = 0. T(4,4) = 1: 1|2|3|4. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 4, 0, 1; 0, 11, 3, 0, 1; 0, 36, 15, 0, 0, 1; 0, 132, 55, 15, 0, 0, 1; 0, 596, 175, 105, 0, 0, 0, 1; 0, 2809, 805, 420, 105, 0, 0, 0, 1; 0, 14608, 4053, 1540, 945, 0, 0, 0, 0, 1; 0, 79448, 24906, 5950, 4725, 945, 0, 0, 0, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, m, t) option remember; `if`(n=0, x^t, add(binomial(n-1, j-1)*b(n-j, max(j, m), `if`(j>m, 1, `if`(j=m, t+1, t))), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0$2)): seq(T(n), n=0..12);
Formula
Sum_{k=0..n} k * T(n,k) = A372649(n).