cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A372725 a(n) = Sum_{k=2..n+2} L(n/prime(k)) where L(n/p) is the Legendre symbol. Row sums of A372726.

Original entry on oeis.org

0, 2, -1, -1, 5, -3, -2, -3, -3, 9, -2, -3, -4, -3, -2, -2, 17, -3, -4, -1, -2, 0, -4, -1, 0, 25, -4, -1, -4, -5, -3, -5, -3, -6, -2, 2, 36, -1, 6, -4, -6, -7, 1, -3, -4, -2, 0, 9, -4, 49, -4, -4, -4, -7, -6, -4, -2, -6, -4, -3, 1, 1, 12, -4, 65, -2, -5, -5
Offset: 0

Views

Author

Peter Luschny, May 22 2024

Keywords

Crossrefs

Cf. A372726, A372724 (fixed points).

Programs

  • Maple
    L := (n, k) -> NumberTheory:-LegendreSymbol(n, ithprime(k)):
    seq(add(L(n, k), k = 2..n + 2), n = 0..67);
  • Mathematica
    A372725[n_] := Sum[JacobiSymbol[n, Prime[k]], {k, 2, n + 2}];
    Array[A372725, 100, 0] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    a(n) = sum(k=2, n+2, kronecker(n, prime(k))); \\ Michel Marcus, May 22 2024

A373087 k is a term if k is a square and its odd part is divisible by exactly two distinct primes.

Original entry on oeis.org

225, 441, 900, 1089, 1225, 1521, 1764, 2025, 2601, 3025, 3249, 3600, 3969, 4225, 4356, 4761, 4900, 5625, 5929, 6084, 7056, 7225, 7569, 8100, 8281, 8649, 9025, 9801, 10404, 12100, 12321, 12996, 13225, 13689, 14161, 14400, 15129, 15876, 16641, 16900, 17424, 17689, 18225
Offset: 1

Views

Author

Peter Luschny, May 23 2024

Keywords

Comments

The sequence b with terms b(n)=2*sqrt(a(n)) is a subsequence of A098904. - Hugo Pfoertner, Jun 01 2024

Examples

			8100 is a term because (8100 / 2^2) = 3^4 * 5^2.
		

Crossrefs

Programs

  • Maple
    isA := k -> issqr(k) and nops(NumberTheory:-PrimeFactors(k/2^padic[ordp](k, 2))) = 2: A := select(isA, [seq(1..19000)]);
  • Mathematica
    Select[Range[200]^2, PrimeNu[#/2^IntegerExponent[#, 2]] == 2 &] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    isok(k) = issquare(k) && (omega(k/2^valuation(k,2)) == 2); \\ Michel Marcus, May 31 2024

Formula

a(n) = Sum_{k=2..n+3} LegendreSymbol(n, prime(k)).
Showing 1-2 of 2 results.