cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372829 a(n) = n! * Sum_{k=0..floor(n/2)} k! / (2*k)!.

Original entry on oeis.org

1, 1, 3, 9, 38, 190, 1146, 8022, 64200, 577800, 5778120, 63559320, 762712560, 9915263280, 138813690960, 2082205364400, 33315285870720, 566359859802240, 10194477476803200, 193695072059260800, 3873901441188844800, 81351930264965740800, 1789742465829286214400
Offset: 0

Views

Author

Ilya Gutkovskiy, May 14 2024

Keywords

Crossrefs

Programs

  • Maple
    A372829 := proc(n)
        add( k!/(2*k)!,k=0..floor(n/2)) ;
        %*n! ;
    end proc:
    seq(A372829(n),n=0..70) ; # R. J. Mathar, Sep 27 2024
  • Mathematica
    Table[n! Sum[k!/(2 k)!, {k, 0, Floor[n/2]}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[(1 + Sqrt[Pi] x Exp[x^2/4] Erf[x/2]/2)/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n! * sum(k=0, n\2,  k! / (2*k)!); \\ Michel Marcus, May 14 2024

Formula

E.g.f.: (1 + sqrt(Pi) * x * exp(x^2/4) * erf(x/2) / 2) / (1 - x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * k! * (n-2*k)!.
a(n) ~ n! * (1 + exp(1/4)*sqrt(Pi)*erf(1/2)/2). - Vaclav Kotesovec, May 14 2024
D-finite with recurrence 2*a(n) -2*n*a(n-1) -n*a(n-2) +n*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 27 2024