cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372855 Number of ways two dihexes can be placed on an n-th regular hexagonal board.

Original entry on oeis.org

0, 33, 702, 3630, 11409, 27603, 56748, 104352, 176895, 281829, 427578, 623538, 880077, 1208535, 1621224, 2131428, 2753403, 3502377, 4394550, 5447094, 6678153, 8106843, 9753252, 11638440, 13784439, 16214253, 18951858, 22022202, 25451205, 29265759, 33493728
Offset: 1

Views

Author

Nicolas Bělohoubek, May 15 2024

Keywords

Examples

			Regular hexagonal boards n = 1...4:
. ___
./   \
.\___/
.     ___
. ___/   \___
./   \___/   \
.\___/   \___/
./   \___/   \
.\___/   \___/
.    \___/
.         ___
.     ___/   \___
. ___/   \___/   \___
./   \___/   \___/   \
.\___/   \___/   \___/
./   \___/   \___/   \
.\___/   \___/   \___/
./   \___/   \___/   \
.\___/   \___/   \___/
.    \___/   \___/
.        \___/
.             ___
.         ___/   \___
.     ___/   \___/   \___
. ___/   \___/   \___/   \___
./   \___/   \___/   \___/   \
.\___/   \___/   \___/   \___/
./   \___/   \___/   \___/   \
.\___/   \___/   \___/   \___/
./   \___/   \___/   \___/   \
.\___/   \___/   \___/   \___/
./   \___/   \___/   \___/   \
.\___/   \___/   \___/   \___/
.    \___/   \___/   \___/
.        \___/   \___/
.            \___/
For n = 2 the a(2) = 33: (without grid)
. . . . . . . . . . . . . . . . . . .
.   x---x   .   x---x   .   x---x   .
.           .           .           .
. x---x   o . o   x---x . o   o   o .
.           .           .           .
.   o   o   .   o   o   .   x---x   .
. . . . . . . . . . . . . . . . . . .
.   x---x   .   x---x   .   x---x   .
.           .           .           .
. x   o   o . o   x   o . o   x   o .
.  \        .      \    .    /      .
.   x   o   .   o   x   .   x   o   .
. . . . . . . . . . . . . . . . . . .
.   x---x   .   o   o   .   o   x   .
.           .           .        \  .
. o   o   x . x---x   o . x---x   x .
.        /  .           .           .
.   o   x   .   x---x   .   o   o   .
. . . . . . . . . . . . . . . . . . .
.   o   o   .   o   o   .   o   o   .
.           .           .           .
. x---x   x . o   x---x . x   x---x .
.        /  .           .  \        .
.   o   x   .   x---x   .   x   o   .
. . . . . . . . . . . . . . . . . . .
.   x   o   .   x   o   .   o   x   .
.  /        .    \      .        \  .
. x   x---x . o   x   o . o   o   x .
.           .           .           .
.   o   o   .   x---x   .   x---x   .
. . . . . . . . . . . . . . . . . . .
.   x   o   .   o   x   .   x   x   .
.  /        .      /    .    \   \  .
. x   o   o . o   x   o . o   x   x .
.           .           .           .
.   x---x   .   x---x   .   o   o   .
. . . . . . . . . . . . . . . . . . .
.   x   o   .   x   o   .   o   x   .
.    \      .    \      .        \  .
. x   x   o . o   x   x . x   o   x .
.  \        .        /  .  \        .
.   x   o   .   o   x   .   x   o   .
. . . . . . . . . . . . . . . . . . .
.   o   x   .   x   x   .   o   x   .
.        \  .  /     \  .        \  .
. o   x   x . x   o   x . o   x   x .
.      \    .           .    /      .
.   o   x   .   o   o   .   x   o   .
. . . . . . . . . . . . . . . . . . .
.   o   o   .   o   x   .   o   o   .
.           .      /    .           .
. x   x   o . x   x   o . x   o   x .
.  \   \    .  \        .  \     /  .
.   x   x   .   x   o   .   x   x   .
. . . . . . . . . . . . . . . . . . .
.   x   o   .   x   x   .   x   o   .
.  /        .  /   /    .  /        .
. x   x   o . x   x   o . x   x   o .
.      \    .           .    /      .
.   o   x   .   o   o   .   x   o   .
. . . . . . . . . . . . . . . . . . .
.   x   o   .   o   x   .   o   o   .
.  /        .      /    .           .
. x   o   x . o   x   x . o   x   x .
.        /  .        /  .    /   /  .
.   o   x   .   o   x   .   x   x   .
. . . . . . . . . . . . . . . . . . .
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 33, 702, 3630, 11409, 27603}, 50] (* Paolo Xausa, Aug 28 2024 *)

Formula

a(n) = (3/2)*(27*n^4 - 90*n^3 + 78*n^2 + 11*n - 24), for n > 1.
a(n) = 5*a(n - 1) - 10*a(n - 2) + 10*a(n - 3) - 5*a(n - 4) + a(n - 5) for n > 6.
G.f.: 3*x^2*(11 + 179*x + 150*x^2 - 17*x^3 + x^4)/(1 - x)^5.
E.g.f.: 36 - 3*x + 3*exp(x)*(27*x^4 + 72*x^3 - 3*x^2 + 26*x - 24)/2. - Stefano Spezia, Jun 04 2024