A372866 a(n) is the sum, over all positive integers x, y such that x*y <= n, of phi(gcd(x,y)).
1, 3, 5, 8, 10, 14, 16, 20, 24, 28, 30, 36, 38, 42, 46, 52, 54, 62, 64, 70, 74, 78, 80, 88, 94, 98, 104, 110, 112, 120, 122, 130, 134, 138, 142, 154, 156, 160, 164, 172, 174, 182, 184, 190, 198, 202, 204, 216, 224, 236, 240, 246, 248, 260, 264, 272, 276, 280
Offset: 1
Keywords
Examples
For n = 3, the (a,b) pairs that appear in the sum are (1,1), (1,2), (1,3), (2,1), (3,1); the gcd of all is 1, and the sum of the phi-function at these 5 values of 1 is 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- I. Kiuchi and Y. Tsuruta, On sums involving the Euler totient function, Bull. Aust. Math. Soc. 109 (2024), 486-497.
Programs
-
Maple
a:= proc(n) option remember; uses numtheory; `if`(n<1, 0, a(n-1)+add(phi(igcd(d, n/d)), d=divisors(n))) end: seq(a(n), n=1..58); # Alois P. Heinz, Jul 04 2024
-
Mathematica
a[n_] := a[n] = DivisorSum[n, EulerPhi[GCD[#, n/#]] &] + a[n - 1]; a[1] = 1; Array[a, 120] (* Michael De Vlieger, Jul 04 2024 *)
-
PARI
a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(gcd(d, k/d)))); \\ Michel Marcus, Jul 04 2024
-
Python
from math import gcd from functools import cache from sympy import divisors, totient as phi @cache def a(n): if n == 1: return 1 return a(n-1) + sum(phi(gcd(a, (b:=n//a))) for a in divisors(n)) print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Jul 04 2024
-
Python
from math import prod from itertools import count, islice from sympy import factorint def A372866_gen(): # generator of terms c = 0 for n in count(1): c += prod(p**(e>>1)+p**(e-1>>1) for p, e in factorint(n).items()) yield c A372866_list = list(islice(A372866_gen(),20)) # Chai Wah Wu, Jul 05 2024
Comments