A372878 a(n) is the sum of all symmetric valleys in the set of flattened Catalan words of length n.
1, 7, 33, 133, 496, 1770, 6142, 20902, 70107, 232489, 763927, 2491107, 8071234, 26007364, 83402988, 266351548, 847482277, 2687729595, 8499036925, 26804655025, 84336597636, 264777690382, 829636763338, 2594821366338, 8102197327711, 25259791668925, 78638974063827
Offset: 4
Links
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See p. 18.
- Index entries for linear recurrences with constant coefficients, signature (9,-30,46,-33,9).
Programs
-
Mathematica
LinearRecurrence[{9,-30,46,-33,9},{1,7,33,133,496},28]
Formula
From Baril et al.: (Start)
G.f.: x^4*(1 - 2*x)/((1 - 3*x)^2*(1 - x)^3).
a(n) = (3^n*(2*n - 5) - 18*n^2 + 54*n - 27)/144. (End)
E.g.f.: (32 + exp(3*x)*(6*x - 5) - 9*exp(x)*(2*x^2 - 4*x + 3))/144.
a(n) - a(n-1) = A261064(n-3).
Comments