A372888 Sum of binary ranks of all strict integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
0, 1, 2, 7, 13, 31, 66, 138, 279, 581, 1173, 2375, 4783, 9630, 19316, 38802, 77689, 155673, 311639, 623845, 1248179, 2497719, 4996387, 9995304, 19992908, 39990902, 79986136, 159983241, 319975073, 639971495, 1279962115, 2559966847, 5119970499, 10240030209
Offset: 0
Keywords
Examples
The strict partitions of 6 are (6), (5,1), (4,2), (3,2,1), with respective binary ranks 32, 17, 10, 7 with sum 66, so a(6) = 66.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3321
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
[0, p[1]*2^(i-1)] +p)(b(n-i, min(n-i, i-1))))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..33); # Alois P. Heinz, May 23 2024 -
Mathematica
Table[Total[Total[2^(#-1)]& /@ Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}]
Formula
a(n) = Sum_{k=1..n} 2^(k-1) * A015716(n,k). - Alois P. Heinz, May 24 2024