A372890 Sum of binary ranks of all integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
0, 1, 4, 10, 25, 52, 115, 228, 471, 931, 1871, 3687, 7373, 14572, 29049, 57694, 115058, 229101, 457392, 912469, 1822945, 3640998, 7277426, 14544436, 29079423, 58137188, 116254386, 232465342, 464889800, 929691662, 1859302291, 3718428513, 7436694889, 14873042016
Offset: 0
Keywords
Examples
The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4 with sum 25, so a(4) = 25.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3321
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+(p->[0, p[1]*2^(i-1)]+p)(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..33); # Alois P. Heinz, May 23 2024
-
Mathematica
Table[Total[Total[2^(#-1)]&/@IntegerPartitions[n]],{n,0,10}]
Formula
From Alois P. Heinz, May 23 2024: (Start)
a(n) = Sum_{k=1..n} 2^(k-1) * A066633(n,k).
a(n) mod 2 = A365410(n-1) for n>=1. (End)