cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372915 a(n) is the number of distinct triangles with area n whose vertices are points of an n X n grid.

Original entry on oeis.org

0, 0, 2, 4, 9, 10, 25, 22, 38, 49, 56, 56, 111, 71, 119, 141, 153, 126, 249, 166, 244, 299, 279, 244, 463, 288, 361, 489, 517, 373, 677, 436, 626, 719, 620, 665, 1078, 604, 811, 936, 1000, 749, 1444, 842, 1221, 1384, 1173, 1016, 1871, 1261, 1393, 1597, 1566, 1259
Offset: 0

Views

Author

Felix Huber, Jun 02 2024

Keywords

Examples

			See the linked illustration for the term a(4) = 9.
		

Crossrefs

Programs

  • Maple
    A372915:=proc(n)
      local p,q,g,h,u,v,x,y,L,M;
      L:=[];
      for g from 2 to n do
        h:=2*n/g;
        if type(h,integer) then
          for x to n do
            M:=[g,sqrt(x^2+h^2),sqrt((g-x)^2+h^2)];
            M:=sort(M);
            if not member(M,L) then
              L:=[op(L),M];
            fi;
          od;
        fi;
      od;
      for p to n do
        for q from 1 to p do
          g:=sqrt(p^2+q^2);
          h:=2*n/g;
          u:=h/g*q;
          v:=q+h/g*p;
          for x from max(1,ceil(p/q*(v-n)+u)) to min(n,floor(p/q*v+u)) do
            y:=q/p*(u-x)+v;
            if type(y,integer) and x <> p and y <> q then
              M:=[g,sqrt(x^2+(y-q)^2),sqrt((x-p)^2+y^2)];
              M:=sort(M);
              if not member(M,L) then
                L:=[op(L),M];
              fi;
            fi;
          od;
        od;
      od;
      return numelems(L);
    end proc;
    seq(A372915(n),n=0..53);