cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372922 Number of diagonal Latin squares of order 2n+1 that are isomorphic to cyclic Latin squares by row and column permutations.

Original entry on oeis.org

1, 0, 480, 161280, 2229534720, 45984153600000, 3271798279766016000
Offset: 0

Views

Author

Eduard I. Vatutin, May 16 2024

Keywords

Comments

The Latin squares considered here are diagonal Latin squares that are isomorphic to cyclic Latin squares. They are can be obtained from cyclic Latin squares (see A338522) by diagonalization (getting a corresponding pair of transversals and placing them on the diagonals, see article). These Latin squares have some interesting properties, for example, there are a large number of diagonal transversals.

Examples

			The cyclic Latin square of order 7
.
  0 1 2 3 4 5 6
  1 2 3 4 5 6 0
  2 3 4 5 6 0 1
  3 4 5 6 0 1 2
  4 5 6 0 1 2 3
  5 6 0 1 2 3 4
  6 0 1 2 3 4 5
.
has a pair of symmetrically placed transversals T1 = (0, 2, 4, 6, 1, 3, 5) and T2 = (0, 5, 3, 1, 6, 4, 2), after permutting rown and columns transversal T1 placed to the main diagonal with getting single diagonal Latin square
.
  2 5 0 3 4 6 1
  0 3 5 1 2 4 6
  1 4 6 2 3 5 0
  6 2 4 0 1 3 5
  3 6 1 4 5 0 2
  4 0 2 5 6 1 3
  5 1 3 6 0 2 4
.
then after permuting rows and columns transversal T2 placed to the second diagonal with getting diagonal Latin square
.
  2 5 0 3 6 1 4
  0 3 5 1 4 6 2
  1 4 6 2 5 0 3
  6 2 4 0 3 5 1
  4 0 2 5 1 3 6
  5 1 3 6 2 4 0
  3 6 1 4 0 2 5
.
that can be canonized to the following diagonal Latin square:
.
  0 1 2 3 4 5 6
  2 3 1 5 6 4 0
  5 6 4 0 1 2 3
  4 0 6 2 3 1 5
  6 2 0 1 5 3 4
  1 5 3 4 0 6 2
  3 4 5 6 2 0 1
.
Cyclic Latin square of order 11
.
  0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 6 7 8 9 10 0
  2 3 4 5 6 7 8 9 10 0 1
  3 4 5 6 7 8 9 10 0 1 2
  4 5 6 7 8 9 10 0 1 2 3
  5 6 7 8 9 10 0 1 2 3 4
  6 7 8 9 10 0 1 2 3 4 5
  7 8 9 10 0 1 2 3 4 5 6
  8 9 10 0 1 2 3 4 5 6 7
  9 10 0 1 2 3 4 5 6 7 8
  10 0 1 2 3 4 5 6 7 8 9
.
can be diagonalized to set of diagonal Latin squares:
.
  0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 10 8 9 0 6 7   1 2 3 4 6 7 8 9 10 0 5   1 2 3 4 5 10 9 0 7 8 6
  3 4 5 10 7 9 1 8 2 0 6   8 10 5 7 9 3 0 4 1 6 2   3 4 5 10 6 9 7 2 1 0 8
  4 5 10 7 9 6 2 0 3 1 8   4 6 8 10 5 1 7 2 9 3 0   10 6 9 8 7 0 2 5 4 3 1
  10 7 9 6 8 0 4 2 5 3 1   9 0 1 2 3 10 4 5 6 7 8   9 8 7 0 1 2 4 6 10 5 3
  7 9 6 8 0 1 5 3 10 4 2   7 9 0 1 2 8 3 10 4 5 6   5 10 6 9 8 7 1 4 3 2 0
  8 0 1 2 3 4 9 10 6 7 5   6 8 10 5 7 2 9 3 0 4 1   7 0 1 2 3 4 10 8 9 6 5
  2 3 4 5 10 7 0 6 1 8 9   10 5 7 9 0 4 1 6 2 8 3   4 5 10 6 9 8 0 3 2 1 7
  5 10 7 9 6 8 3 1 4 2 0   3 4 6 8 10 0 5 1 7 2 9   8 7 0 1 2 3 5 9 6 10 4
  6 8 0 1 2 3 7 5 9 10 4   2 3 4 6 8 9 10 0 5 1 7   6 9 8 7 0 1 3 10 5 4 2
  9 6 8 0 1 2 10 4 7 5 3   5 7 9 0 1 6 2 8 3 10 4   2 3 4 5 10 6 8 1 0 7 9 ...
.
(totally 81 main classes of diagonal Latin squares).
		

Crossrefs

Formula

a(n) = A372923(n) * (2n+1)!. - Eduard I. Vatutin, Sep 08 2024