A373087 k is a term if k is a square and its odd part is divisible by exactly two distinct primes.
225, 441, 900, 1089, 1225, 1521, 1764, 2025, 2601, 3025, 3249, 3600, 3969, 4225, 4356, 4761, 4900, 5625, 5929, 6084, 7056, 7225, 7569, 8100, 8281, 8649, 9025, 9801, 10404, 12100, 12321, 12996, 13225, 13689, 14161, 14400, 15129, 15876, 16641, 16900, 17424, 17689, 18225
Offset: 1
Keywords
Examples
8100 is a term because (8100 / 2^2) = 3^4 * 5^2.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA := k -> issqr(k) and nops(NumberTheory:-PrimeFactors(k/2^padic[ordp](k, 2))) = 2: A := select(isA, [seq(1..19000)]);
-
Mathematica
Select[Range[200]^2, PrimeNu[#/2^IntegerExponent[#, 2]] == 2 &] (* Paolo Xausa, Jul 10 2024 *)
-
PARI
isok(k) = issquare(k) && (omega(k/2^valuation(k,2)) == 2); \\ Michel Marcus, May 31 2024
Formula
a(n) = Sum_{k=2..n+3} LegendreSymbol(n, prime(k)).
Comments