A373118 Number T(n,k) of compositions of n such that the set of parts is [k]; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 3, 0, 1, 7, 0, 1, 11, 6, 0, 1, 20, 12, 0, 1, 32, 32, 0, 1, 54, 72, 0, 1, 87, 152, 24, 0, 1, 143, 311, 60, 0, 1, 231, 625, 180, 0, 1, 376, 1225, 450, 0, 1, 608, 2378, 1116, 0, 1, 986, 4566, 2544, 120, 0, 1, 1595, 8700, 5752, 360
Offset: 0
Examples
T(6,2) = 11: 1122, 1212, 1221, 2112, 2121, 2211, 11112, 11121, 11211, 12111, 21111. T(7,3) = 12: 1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211. Triangle T(n,k) begins: 1; 0, 1; 0, 1; 0, 1, 2; 0, 1, 3; 0, 1, 7; 0, 1, 11, 6; 0, 1, 20, 12; 0, 1, 32, 32; 0, 1, 54, 72; 0, 1, 87, 152, 24; 0, 1, 143, 311, 60; 0, 1, 231, 625, 180; 0, 1, 376, 1225, 450; 0, 1, 608, 2378, 1116; 0, 1, 986, 4566, 2544, 120; ...
Links
- Alois P. Heinz, Rows n = 0..750, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, t!, 0), `if`(i<1 or n b(n, k, 0): seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..18);