A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).
1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
Offset: 0
Examples
The triangle begins: 1; 1, 1; 3, 1, 1; 13, 2, 2, 1; 73, 6, 6, 3, 1; 501, 24, 24, 12, 4, 1; 4051, 120, 120, 60, 20, 5, 1; ...
Links
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 13.
Crossrefs
Programs
-
Mathematica
T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
Formula
T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.