cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373169 Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 1, 5, 1, 6, 12, 16, 6, 6, 1, 7, 15, 22, 25, 12, 7, 1, 8, 18, 28, 35, 36, 19, 8, 1, 9, 21, 34, 45, 51, 49, 27, 9, 1, 1, 24, 4, 55, 66, 7, 64, 36, 1, 1, 11, 18, 46, 29, 81, 91, 29, 81, 46, 2, 1, 12, 3, 43, 75, 6, 112, 12, 54, 1, 57, 3
Offset: 2

Views

Author

Paolo Xausa, May 27 2024

Keywords

Comments

Row n is the zeroless analog of the positive n-gonal numbers.

Examples

			The array begins:
  n\k|  1  2   3   4   5    6    7    8    9   10  ...
  ----------------------------------------------------
   2 |  1, 2,  3,  4,  5,   6,   7,   8,   9,   1, ... = A177274
   3 |  1, 3,  6,  1,  6,  12,  19,  27,  36,  46, ... = A243658 (from n = 1)
   4 |  1, 4,  9, 16, 25,  36,  49,  64,  81,   1, ... = A370812
   5 |  1, 5, 12, 22, 35,  51,   7,  29,  54,  82, ... = A373171
   6 |  1, 6, 15, 28, 45,  66,  91,  12,  45,  82, ... = A373172
   7 |  1, 7, 18, 34, 55,  81, 112, 148, 189, 235, ...
   8 |  1, 8, 21,  4, 29,   6,  43,  86, 135,  19, ...
   9 |  1, 9, 24, 46, 75, 111, 154,  24,  81, 145, ...
  10 |  1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...
  ...      |                                     \______ A373170 (main diagonal)
        A004719 (from n = 2)
		

Crossrefs

Cf. rows 2..6: A177274, A243658, A370812, A373171, A373172.
Cf. A373170 (main diagonal).

Programs

  • Mathematica
    noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];
    A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];
    Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]
  • PARI
    noz(n) = fromdigits(select(sign, digits(n)));
    T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));
    matrix(7,7,n,k,T(n+1,k)) \\ Michel Marcus, May 30 2024