A373177 Integers k such that 2k + 1 and 4k + 3 are anagrams of k.
15632, 126530, 130265, 150632, 152630, 156329, 162530, 163025, 1265030, 1265300, 1265309, 1300265, 1302650, 1302659, 1500632, 1502630, 1506329, 1526300, 1526309, 1563299, 1566332, 1625030, 1625300, 1625309, 1630025, 1630250, 1630259, 1656332, 12650030
Offset: 1
Examples
15632 is a term, since 2*15632 + 1 = 31265 and 4*15632 + 3 = 62531 are both permutations of the digits of 15632.
Programs
-
Maple
filter:= proc(n) local L; L:= sort(convert(n,base,10)); sort(convert(2*n+1,base,10))=L and sort(convert(4*n+3,base,10))=L end proc: R:= NULL: count:= 0: for d from 1 while count < 100 do for x from 10^(d-1) + 7 by 9 to (10^d-3)/4 while count < 100 do if filter(x) then R:= R,x; count:= count+1 fi od od: R; # Robert Israel, May 27 2024
-
Mathematica
sid[n_] := Sort[IntegerDigits[n]]; Select[Range[13000000], sid[#] == sid[2*# + 1] == sid[4*# + 3] &] (* Amiram Eldar, May 27 2024 *)
-
PARI
isok(k) = my(d=vecsort(digits(k))); (d == vecsort(digits(2*k+1))) && (d == vecsort(digits(4*k+3))); \\ Michel Marcus, May 28 2024
-
Python
from itertools import count, islice def agen(): # generator of terms for e in count(1): for k in range(10**(e-1), 10**e//4): if sorted(str(k)) == sorted(str(2*k+1)) == sorted(str(4*k+3)): yield k print(list(islice(agen(), 30))) # Michael S. Branicky, May 26 2024
Comments