A373202 Product over all sums of {n, +/-(n-1), +/-(n-2), ..., +/-1}, where "+/-" means here we use all possible combination of signs, this means for n > 0 that we have 2^(n-1) factors.
1, 1, 3, 0, 0, -28733079375, -821329806742140930609375, 0, 0
Offset: 0
Keywords
Examples
a(4) = (4+3+2+1)*(4+3+2-1)*(4+3-2+1)*(4+3-2-1)*(4-3+2+1)*(4-3+2-1)*(4-3-2+1)*(4-3-2-1) = 10*8*6*4*4*2*0*(-2) = 0.
Crossrefs
Programs
-
Mathematica
a[n_]:=Product[Sum[(n+1-m)(2*Part[IntegerDigits[2^(n-1)+k,2],m]-1),{m,n}],{k,0,2^(n-1)-1}]; Array[a,10,0] (* Stefano Spezia, May 29 2024 *)
-
PARI
a(n) = prod(k=0, 2^(n-1)-1, sum(m=1, n, (n+1-m)*(-1+2*(digits(2^(n-1)+k, 2)[m]))))
Comments