A373225 Primes p = prime(k) such that 0 = Sum_{j=1..k} T(k, j) where T(n, k) = K(prime(n), prime(k)) * K(prime(k), prime(n)) and K is the Kronecker symbol.
2, 11, 23, 31, 47, 59, 67, 103, 127, 419, 431, 439, 467, 1259, 1279, 1303, 26947, 615883, 616787, 617051, 617059, 617087, 617647, 617731, 617819, 617879, 618463, 618559, 618587, 618671, 620467, 623867, 623879, 624199, 624271, 624311, 624319, 624331, 626887, 626987, 627071
Offset: 1
Keywords
Examples
The corresponding indices in A373224 start: 1, 5, 9, 11, 15, 17, 19, 27, 31, 81, 83, 85, 91, 205, 207, 213. T(k, j) defined as in the name. 11 is a term because 11 = prime(5) and Sum_{j=1..5} T(k, j) = 1 + (-1) + 1 + (-1) + 0 = 0.
Links
- Michel Marcus, Table of n, a(n) for n = 1..74
- Michael S. Branicky, Proof for A373225
Programs
-
Maple
A := select(n -> A373224(n) = 0, [seq(1..500)]): seq(ithprime(a), a in A);
Extensions
a(17) onward from Michel Marcus, May 30 2024
Comments