cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373288 T(n, k) is the total number of symmetric peaks in all partitions of n with exactly k blocks, n >= 3, 2 <= k <= n-1.

Original entry on oeis.org

1, 3, 2, 8, 12, 3, 20, 54, 30, 4, 48, 215, 205, 60, 5, 112, 799, 1185, 580, 105, 6, 256, 2842, 6230, 4585, 1365, 168, 7, 576, 9812, 30828, 32256, 14140, 2828, 252, 8, 1280, 33165, 146355, 210378, 128037, 37170, 5334, 360, 9, 2816, 110361, 674535, 1301860, 1060815, 420756, 86730, 9360, 495, 10
Offset: 3

Views

Author

W. Asakly, Jun 01 2024

Keywords

Examples

			The triangle T(n, k) begins:
   3|   1
   4|   3      2
   5|   8     12      3
   6|  20     54     30      4
   7|  48    215    205     60      5
   8| 112    799   1185    580    105      6
   9| 256   2842   6230   4585   1365    168      7
  10| 576   9812  30828  32256  14140   2828    252      8
.
T(5,3) represents the partitions of the set {1,2,3,4,5} into 3 blocks:
The canonical form of a set partition of [n] is an n-tuple indicating the block in which each integer occurs. The symmetric peaks in the canonical sequential form are listed:
  (1, 2, 1, 1, 3) -> 1 symmetric peak   (1, 2, 1)
  (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)
  (1, 2, 1, 2, 3) -> 1 symmetric peak,  (1, 2, 1)
  (1, 2, 1, 3, 2) -> 1 symmetric peak,  (1, 2, 1)
  (1, 2, 1, 3, 3) -> 1 symmetric peak,  (1, 2, 1)
  (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)
  (1, 2, 2, 3, 2) -> 1 symmetric peak,  (2, 3, 2)
  (1, 2, 3, 2, 1) -> 1 symmetric peak,  (2, 3, 2)
  (1, 2, 3, 2, 2) -> 1 symmetric peak,  (2, 3, 2)
  (1, 2, 3, 2, 3) -> 1 symmetric peak,  (2, 3, 2).
		

Crossrefs

Cf. A008277 (Stirling2).
Cf. A001792 (1st column), A027480 (subdiagonal).

Programs

  • Maple
    T := (n, k) -> (k-1) * Stirling2(n-1, k) + add(binomial(j, 2) * add(j^(i-3) * Stirling2(n-i, k),i=3..n-k), j = 2..k): seq(print(seq(T(n, k), k = 2..n-1)), n = 3..10);  # Peter Luschny, Jun 06 2024
  • Mathematica
    T[n_, k_] := (k-1) * StirlingS2[n-1, k] + Sum[Binomial[j, 2] * Sum[j^(i-3) * StirlingS2[n-i, k], {i, 3, n-k}], {j, 2, k}];
    Table[T[n, k], {n, 3, 12}, {k, 2, n-1}] // Flatten
  • PARI
    T(n, k) = (k-1) * stirling(n-1, k, 2) + sum(j=2, k, binomial(j, 2) * sum(i=3, n-k, j^(i-3) * stirling(n-i, k, 2))); \\ Michel Marcus, Jun 06 2024

Formula

T(n,k) = (k-1) * Stirling2(n-1, k) + Sum_{j=2..k} binomial(j, 2) * Sum_{i=3..n-k} j^(i-3) * Stirling2(n-i, k).