A373293 Number of edge covers of the fan graph F_{n,3}.
16, 154, 1240, 9202, 66016, 466954, 3283240, 23026402, 161316016, 1129605754, 7908421240, 55362491602, 387548070016, 2712868376554, 18990174295240, 132931507044802, 930521410248016, 6513652454539354, 45595574930185240, 319169047756526002
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Edge Cover.
- Eric Weisstein's World of Mathematics, Fan Graph.
- Index entries for linear recurrences with constant coefficients, signature (11,-31,21).
Crossrefs
Cf. A100774 (in F_{n,2}).
Programs
-
Mathematica
A373293[n_] := 4*7^n - 5*3^n + 3; Array[A373293, 25] (* or *) LinearRecurrence[{11, -31, 21}, {16, 154, 1240}, 25] (* Paolo Xausa, Jun 24 2024 *)
-
Python
def a_n(n): return 4 * 7**n - 5 * 3**n + 3
Formula
a(n) = 4*7^n - 5*3^n + 3.
From Stefano Spezia, Jun 24 2024: (Start)
G.f.: 2*x*(8 - 11*x + 21*x^2)/((1 - x)*(1 - 3*x)*(1 - 7*x)).
E.g.f.: 4*exp(7*x) - 5*exp(3*x) + 3*exp(x) - 2. (End)
Comments