cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A374446 Positions of zeros in the expansion of Product_{k>=0} (1 - x^(2^k))^3; A373308(a(n)) = 0 for n >= 1.

Original entry on oeis.org

2, 11, 14, 47, 50, 59, 62, 191, 194, 203, 206, 239, 242, 251, 254, 767, 770, 779, 782, 815, 818, 827, 830, 959, 962, 971, 974, 1007, 1010, 1019, 1022, 3071, 3074, 3083, 3086, 3119, 3122, 3131, 3134, 3263, 3266, 3275, 3278, 3311, 3314, 3323, 3326, 3839, 3842, 3851, 3854, 3887, 3890, 3899
Offset: 1

Views

Author

Paul D. Hanna, Jul 08 2024

Keywords

Comments

Conjecture: a(n) = A001196(n) - 1 for n >= 1, where A001196 lists numbers with only even length runs in their binary expansion.

Examples

			Product_{k>=0} (1 - x^(2^k))^3 = 1 - 3*x + 0*x^2 + 8*x^3 - 9*x^4 + 3*x^5 + 8*x^6 - 24*x^7 + 15*x^8 + 19*x^9 - 24*x^10 + 0*x^11 + 17*x^12 - 27*x^13 + 0*x^14 + 64*x^15 + ... + A373308(n)*x^n + ...
in which the coefficients of {x^2, x^11, x^14, x^47, ..., x^a(n), ...} are zero.
Compare to numbers with only even length runs in their binary expansion: A001196 = [3, 12, 15, 48, 51, 60, 63, 192, 195, 204, 207, 240, 243, 252, 255, 768, ...]; it appears that a(n) = A001196(n) - 1 for n >= 1.
		

Crossrefs

A373309 Number of binary partitions of n into three kinds of parts.

Original entry on oeis.org

1, 3, 9, 19, 42, 78, 146, 246, 420, 668, 1068, 1620, 2470, 3618, 5310, 7546, 10746, 14910, 20706, 28134, 38262, 51090, 68238, 89706, 117964, 153012, 198468, 254332, 325914, 413214, 523778, 657606, 825444, 1027292, 1278060, 1577748, 1947062, 2386002, 2922702, 3557162, 4327644
Offset: 0

Views

Author

Paul D. Hanna, Jun 24 2024

Keywords

Comments

Submitted at the request of Joerg Arndt.

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 19*x^3 + 42*x^4 + 78*x^5 + 146*x^6 + 246*x^7 + 420*x^8 + 668*x^9 + 1068*x^10 + 1620*x^11 + 2470*x^12 + ...
where A(x) = 1/((1-x)^3*(1-x^2)^3*(1-x^4)^3* ... * (1 - x^(2^k))^3 * ...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/Product[(1 - x^(2^k))^3, {k, 0, Log[2, nmax] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 25 2024 *)
  • PARI
    {a(n) = my(A = 1/prod(k=0,#binary(n), (1 - x^(2^k) +x*O(x^n))^3 )); polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following formulas.
(1) A(x) = 1 / Product_{n>=0} (1 - x^(2^n))^3, from Joerg Arndt, Fri Jun 21 2024.
(2) A(x) = Product_{n>=0} (1 + x^(2^n))^(3*(n+1)), deduced from a formula by Joerg Arndt in A018819.
(3) A(x) = A(x^2) / (1-x)^3.
(4) Convolution cube of A018819, which is the number of partitions of n into powers of 2.

A373313 Expansion of g.f. A(x) satisfying A(x)^2 = A( x*A(x)/(1 - A(x))^3 ).

Original entry on oeis.org

1, 3, 18, 127, 999, 8376, 73400, 664143, 6157467, 58190531, 558478098, 5428532148, 53331912158, 528721992000, 5282688183600, 53140908294191, 537760961917833, 5470638540940401, 55914705172750446, 573908634206898951, 5913010265931479289, 61132102068652970100, 634002859944973526904
Offset: 1

Views

Author

Paul D. Hanna, Jun 25 2024

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 18*x^3 + 127*x^4 + 999*x^5 + 8376*x^6 + 73400*x^7 + 664143*x^8 + 6157467*x^9 + 58190531*x^10 + ...
where A( x*A(x)/(1 - A(x))^3 ) = A(x)^2.
RELATED SERIES.
A(x)^2 = x^2 + 6*x^3 + 45*x^4 + 362*x^5 + 3084*x^6 + 27318*x^7 + 249149*x^8 + 2323968*x^9 + 22067697*x^10 + ...
Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then
R(x) = x * Product_{n>=0} (1 - x^(2^n))^3 = x - 3*x^2 + 8*x^4 - 9*x^5 + 3*x^6 + 8*x^7 - 24*x^8 + 15*x^9 + 19*x^10 + ... + A373308(n-1) * x^n + ...
thus,
x = A(x) * (1 - A(x))^3 * (1 - A(x)^2)^3 * (1 - A(x)^4)^3 * (1 - A(x)^8)^3 * (1 - A(x)^16)^3 * ... * (1 - A(x)^(2^n))^3 * ...
Also, notice that the cube root of A(x)/x is an integral series
(A(x)/x)^(1/3) = 1 + x + 5*x^2 + 32*x^3 + 239*x^4 + 1937*x^5 + 16578*x^6 + 147408*x^7 + 1348465*x^8 + 12608851*x^9 + 119972595*x^10 + ...
SPECIFIC VALUES.
A(t) = 1/6 at t = (1/6) * Product_{n>=0} (1 - 1/6^(2^n))^3 = 0.0884290923082561345726735004152032422138677544...
A(t) = 1/7 at t = (1/7) * Product_{n>=0} (1 - 1/7^(2^n))^3 = 0.0844605844040460521136280418653467784637497846...
A(t) = 1/8 at t = (1/8) * Product_{n>=0} (1 - 1/8^(2^n))^3 = 0.0798174217593180496284155971364088109289815675...
A(1/12) = 0.1379538716718371951653031812720929490038524971492263...
A(1/13) = 0.1160657279647048938238673646663527089747582497393475...
A(1/14) = 0.1016889922856297159061963243507242491941351481713051...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = serreverse(x*prod(k=0,#binary(n), (1 - x^(2^k) + x*O(x^n))^3))); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff( subst(Ser(A),x, x*Ser(A)/(1 - Ser(A))^3 ) - Ser(A)^2,#A)); A[n+1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x)^2 = A( x*A(x)/(1 - A(x))^3 ).
(2) A(x)^4 = A( x*A(x)^3/((1 - A(x))^3*(1 - A(x)^2)^3) ).
(3) A(x)^8 = A( x*A(x)^7/((1 - A(x))^3*(1 - A(x)^2)^3*(1 - A(x)^4)^3) ).
(4) A(x)^(2^n) = A( x*A(x)^(2^n-1)/Product_{k=0..n-1} (1 - A(x)^(2^k))^3 ) for n > 0.
(5) A(x) = x / Product_{n>=0} (1 - A(x)^(2^n))^3.
(6) A(x) = x * Product_{n>=0} (1 + A(x)^(2^n))^(3*(n+1)).
(7) A(x) = Series_Reversion( x*B(x) ), where B(x) = Product_{n>=0} (1 - x^(2^n))^3 is the g.f. of A373308.
The radius of convergence r and A(r) satisfy 1 = Sum_{n>=0} 3*2^n * A(r)^(2^n)/(1 - A(r)^(2^n)) and r = A(r) * Product_{n>=0} (1 - A(r)^(2^n))^3, where r = 0.090173114826637655491436994778921911119292413640909... and A(r) = 0.197474208053634831172176658351098789075712647862486...
Given r and A(r) above, A(r) also satisfies 1 = Sum_{n>=0} 3*(n+1)*2^n * A(r)^(2^n)/(1 + A(r)^(2^n)).
Showing 1-3 of 3 results.