A373308 Expansion of Product_{n>=0} (1 - x^(2^n))^3.
1, -3, 0, 8, -9, 3, 8, -24, 15, 19, -24, 0, 17, -27, 0, 64, -57, -21, 64, -72, 33, 53, -72, 24, 17, -51, 24, 64, -81, 27, 64, -192, 135, 107, -192, 120, 1, -171, 120, 152, -183, -27, 152, -192, 87, 163, -192, 0, 89, -75, 0, 136, -129, -21, 136, -216, 111, 179, -216, 0, 145, -219, 0, 512
Offset: 0
Examples
G.f.: A(x) = 1 - 3*x + 8*x^3 - 9*x^4 + 3*x^5 + 8*x^6 - 24*x^7 + 15*x^8 + 19*x^9 - 24*x^10 + 17*x^12 - 27*x^13 + 64*x^15 - 57*x^16 - 21*x^17 + 64*x^18 + ... where A(x) = (1-x)^3 * (1-x^2)^3 * (1-x^4)^3 * (1-x^8)^3 * (1-x^16)^3 * ... Notice that a(n) = 0 at n = [2, 11, 14, 47, 50, 59, 62, 191, 194, 203, 206, 239, 242, 251, 254, 767, ...] which appears to equal 3*A000695(k) - 1 for k >= 1.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..16400
Programs
-
PARI
{a(n) = my(A = prod(k=0,#binary(n), (1 - x^(2^k))^3 +x*O(x^n))); polcoeff(A, n)} for(n=0,60, print1(a(n),", "))
Comments