A373309 Number of binary partitions of n into three kinds of parts.
1, 3, 9, 19, 42, 78, 146, 246, 420, 668, 1068, 1620, 2470, 3618, 5310, 7546, 10746, 14910, 20706, 28134, 38262, 51090, 68238, 89706, 117964, 153012, 198468, 254332, 325914, 413214, 523778, 657606, 825444, 1027292, 1278060, 1577748, 1947062, 2386002, 2922702, 3557162, 4327644
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 9*x^2 + 19*x^3 + 42*x^4 + 78*x^5 + 146*x^6 + 246*x^7 + 420*x^8 + 668*x^9 + 1068*x^10 + 1620*x^11 + 2470*x^12 + ... where A(x) = 1/((1-x)^3*(1-x^2)^3*(1-x^4)^3* ... * (1 - x^(2^k))^3 * ...).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 521 terms from Paul D. Hanna)
Programs
-
Mathematica
nmax = 40; CoefficientList[Series[1/Product[(1 - x^(2^k))^3, {k, 0, Log[2, nmax] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 25 2024 *)
-
PARI
{a(n) = my(A = 1/prod(k=0,#binary(n), (1 - x^(2^k) +x*O(x^n))^3 )); polcoeff(A,n)} for(n=0,40,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following formulas.
(1) A(x) = 1 / Product_{n>=0} (1 - x^(2^n))^3, from Joerg Arndt, Fri Jun 21 2024.
(2) A(x) = Product_{n>=0} (1 + x^(2^n))^(3*(n+1)), deduced from a formula by Joerg Arndt in A018819.
(3) A(x) = A(x^2) / (1-x)^3.
(4) Convolution cube of A018819, which is the number of partitions of n into powers of 2.
Comments