A373322 The number of indecomposable summands, counted with multiplicity, in tensor powers of the vector representation of SL2 in characteristic 2.
1, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99, 351, 351, 1273, 1273, 4679, 4679, 17341, 17341, 64637, 64637, 242019, 242019, 909789, 909789, 3432751, 3432751, 12998311, 12998311, 49387289, 49387289, 188261329, 188261329, 719860679, 719860679, 2760525963, 2760525963, 10614508493, 10614508493
Offset: 0
Keywords
Links
- K. Coulembier, P. Etingof, V. Ostrik, and D. Tubbenhauer, Fractal behavior of tensor powers of the two dimensional space in prime characteristic, arXiv:2405.16786 [math.RT], 2024.
- M. Larsen, Bounds for SL2-indecomposables in tensor powers of the natural representation in characteristic 2, arXiv:2405.16015 [math.RT], 2024.
- Daniel Tubbenhauer, GitHub page
Programs
-
Mathematica
a[0|1] = 1; a[n_] := a[n] = With[{m = Ceiling[n/2]}, Sum[Binomial[m-1, k] 2^(m-1-k) a[k], {k, 0, m-1}]]; Table[a[n], {n, 0, 40}]
-
PARI
a(n) = if (n<=1, 1, my(m=ceil(n/2)); sum(k=0, m-1, binomial(m-1,k)*2^(m-1-k)*a(k))); \\ Michel Marcus, Jun 01 2024
Formula
a(0) = a(1) = 1, and for n>1: a(2n-1) = a(2n) = Sum_{k=0..n-1} binomial(n-1,k)*2^(n-1-k)*a(k).
a(n) ~ h(n)*n^(t)*2^n for t=1/2log_2(3/2)-1 approx. -0.707 and h(n) a bounded function. The constant t is A153460 - 2.
Comments