cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373392 Inverse binomial transform of A135318.

Original entry on oeis.org

1, 0, 0, 1, -2, 3, -4, 7, -18, 51, -136, 339, -814, 1935, -4620, 11111, -26842, 64923, -156944, 379067, -915078, 2208711, -5331476, 12870639, -31072754, 75018195, -181113240, 437248771, -1055610782, 2548462143, -6152518684, 14853483127, -35859484938, 86572485771
Offset: 0

Views

Author

Paul Curtz, Jun 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-4, -5, -2, 2}, {1, 0, 0, 1}, 35] (* Amiram Eldar, Jun 09 2024 *)
  • PARI
    a(n) = ((-([-2,-1;-1, 0]^(n-2))[2, 1]) - 2*((I-1)^(n-4) + (-I-1)^(n-4)))/3; \\ Thomas Scheuerle, Jun 04 2024

Formula

G.f.: (1 + 4*x + 5*x^2 + 3*x^3) / ( (1 + 2*x - x^2) * (1 + 2*x + 2*x^2) ).
E.g.f.: 1/6*exp(-x)*(2*cos(-x) + 4*cosh(sqrt(2)*-x) - 3*sqrt(2)*sinh(sqrt(2)*-x)).
a(n) = -4*a(n-1) - 5*a(n-2) - 2*a(n-3) + 2*a(n-4), for n > 4.
a(n) = (-1)^(n+1)*(A000129(n-2) + 2*A009545(n-2))/3, for n > 2. - Thomas Scheuerle, Jun 04 2024
a(n) = A373358(n-3) - (-1)^n*A009545(n+2) for n > 2.