A373407 Smallest positive integer k such that no more than n numbers (formed by multiplying k by a digit) are anagrams of k, or -1 if no such number exists.
1, 1035, 123876, 1402857, 1037520684, 142857
Offset: 1
Examples
a(2) = 1035, because 1035 * 1 = 1035 and 1035 * 3 = 3105 are anagrams of 1035, and no other number 1035 * i with digit i is an anagram of 1035, and no lesser number verifies this property. Table n, k, set of multipliers. 1 1 [1] 2 1035 [1, 3] 3 123876 [1, 3, 7] 4 1402857 [1, 2, 3, 5] 5 1037520684 [1, 2, 4, 5, 8] 6 142857 [1, 2, 3, 4, 5, 6]
Links
- Wikipedia, Cyclic numbers.
Crossrefs
Programs
-
PARI
isok(k, n) = my(d=vecsort(digits(k))); sum(i=1, 9, vecsort(digits(k*i)) == d) == n; \\ Michel Marcus, Jun 04 2024
Comments