A373424 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 8, 1, 0, 1, 6, 15, 30, 31, 13, 1, 0, 1, 7, 21, 55, 85, 70, 21, 1, 0, 1, 8, 28, 91, 190, 246, 157, 34, 1, 0, 1, 9, 36, 140, 371, 671, 707, 353, 55, 1, 0, 1, 10, 45, 204, 658, 1547, 2353, 2037, 793, 89, 1, 0
Offset: 0
Examples
Generating functions of the rows: gf0 = 1; gf1 = -1/( x-1); gf2 = 1/(-x-1/(-x-1)); gf3 = -1/( x-1/( x-1/( x-1))); gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1)))); gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1))))); gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))); ... Array A(n, k) starts: [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 [2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045 [3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356 [4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357 [5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358 [6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359 A000027,A000330, A085461, A244881, ... A000217, A006322, A108675, ... . Triangle T(n, k) = A(n - k, k) starts: [0] 1; [1] 1, 0; [2] 1, 1, 0; [3] 1, 2, 1, 0; [4] 1, 3, 3, 1, 0; [5] 1, 4, 6, 5, 1, 0; [6] 1, 5, 10, 14, 8, 1, 0;
Links
- T. Kyle Petersen and Yan Zhuang, Zig-zag Eulerian polynomials, arXiv:2403.07181 [math.CO], 2024. (Table 3)
Crossrefs
Programs
-
Maple
row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x; fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end: A := (n, k) -> row(n, 12)[k+1]: # array form T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
-
SageMath
def Arow(n, len): R.
= PowerSeriesRing(ZZ, len) if n == 0: return [1] + [0]*(len - 1) x = -x if n % 2 else x a = x + 1 for _ in range(n): a = x - 1 / a a = x - a if n % 2 else a - x return a.list() for n in range(7): print(Arow(n, 10))
Comments