cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373433 a(n) = A000111(n) * A000142(n). Row sums of A373434.

Original entry on oeis.org

1, 1, 2, 12, 120, 1920, 43920, 1370880, 55843200, 2879815680, 183330604800, 14122244505600, 1294628759424000, 139287595371724800, 17379949655535667200, 2489494639794978816000, 405724534220435189760000, 74646464089618378653696000, 15396938399483145082626048000
Offset: 0

Views

Author

Peter Luschny, Jun 04 2024

Keywords

Crossrefs

Programs

  • Maple
    A373433 := n -> ifelse(n = 0, 1, n! * 2^n * abs(euler(n, 1/2) + euler(n, 1))):
    seq(A373433(n), n = 0..18);
  • Mathematica
    A373433[n_] := 2 I^(n + 1) n! PolyLog[-n, -I]; A373433[0] := 1;
    Table[A373433[n], {n, 0, 18}]
  • SageMath
    # Algorithm of Ludwig Seidel (1877).
    def A373433_list(n) :
        R = []; S = []; A = {-1:0, 0:1}; k = 0; f = 1; e = 1
        for i in (0..n) :
            Am = 0; A[k + e] = 0; e = -e
            for j in (0..i) : Am += A[k]; A[k] = Am; k += e
            R.append(Am); S.append(f*Am); f *= i + 1
        return S
    print(A373433_list(18))

Formula

a(n) = n! * 2^n * |Euler(n, 1/2) + Euler(n, 1)| for n >= 1.
a(n) ~ ((2*n^2)/(Pi*e^2))^n*(8*n + 4/3).