A373434 Triangle read by rows: Coefficients of the Eulerian polynomials EC(n, x)*EZ(n, x), where EC denote the classical Eulerian and EZ the zig-zag Eulerian polynomials.
1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 45, 45, 14, 1, 1, 33, 255, 671, 671, 255, 33, 1, 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71, 1, 1, 146, 4420, 46571, 206932, 427370, 427370, 206932, 46571, 4420, 146, 1, 1
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 1; [2] 1, 1; [3] 1, 5, 5, 1; [4] 1, 14, 45, 45, 14, 1; [5] 1, 33, 255, 671, 671, 255, 33, 1; [6] 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71, 1; ... Written as polynomials P(n, x): [0] 1; [1] 1; [2] 1 + x; [3] 1 + 5*x + 5*x^2 + x^3; [4] 1 + 14*x + 45*x^2 + 45*x^3 + 14*x^4 + x^5; [5] 1 + 33*x + 255*x^2 + 671*x^3 + 671*x^4 + 255*x^5 + 33*x^6 + x^7; ... P(3, x) = A205497(3, x) * A173018(3, x) = (1 + x) * (1 + 4*x + x^2) = 1 + 5*x + 5*x^2 + x^3.
Links
- Peter Luschny, Illustrating the polynomials.
Programs
-
Maple
# Using the recurrence by Kyle Petersen from A205497. R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n - 1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)): EC := (n, x) -> local k; simplify(add(combinat:-eulerian1(n, k)*x^k, k = 0..n)): EZC := (n, x) -> expand(EZ(n, x) * EC(n, x)): Trow := n -> local k; if n < 2 then [1] elif n = 2 then [1, 1] else [seq(coeff(EZC(n, x), x, k), k = 0..2*n-3)] fi: seq(print(EZC(n, x)), n = 0..6); seq(print(Trow(n)), n = 0..6);
-
Mathematica
R[n_] := R[n] = Module[{F}, If[n == 0, 1/(1 - q*x), F = R[n - 1]; Simplify[p/(p - q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]]; EZ[n_, x_] := If[n < 3, 1, Expand[Simplify[ReplaceAll[R[n], {p -> 1, q -> 1}]*(1 - x)^(n + 1)] / x^2]]; eulerian1[n_, k_] := If[n == 0, 1, Sum[(-1)^j*Binomial[n + 1, j]*(k + 1 - j)^n, {j, 0, k + 1}]]; EC[n_, x_] := Sum[eulerian1[n, k]*x^k, {k, 0, n}]; EZC [n_, x_] := Expand[EZ[n, x] * EC[n, x]]; Trow[n_] := CoefficientList[EZC[n, x], x]; Table[Trow[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2024, after Peter Luschny's Maple program *)
Comments