cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A373434 Triangle read by rows: Coefficients of the Eulerian polynomials EC(n, x)*EZ(n, x), where EC denote the classical Eulerian and EZ the zig-zag Eulerian polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 45, 45, 14, 1, 1, 33, 255, 671, 671, 255, 33, 1, 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71, 1, 1, 146, 4420, 46571, 206932, 427370, 427370, 206932, 46571, 4420, 146, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jun 04 2024

Keywords

Comments

There are various conventions for indexing Eulerian numbers. The one used here determines that all corresponding polynomials have p(n, 0) = 1. This applies equally to the classical Eulerian polynomials with coefficients A173018, the Eulerian zig-zag polynomials with coefficients A205497, and the polynomials here.

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1;
  [2] 1,  1;
  [3] 1,  5,    5,    1;
  [4] 1, 14,   45,   45,    14,     1;
  [5] 1, 33,  255,  671,   671,   255,   33,    1;
  [6] 1, 71, 1131, 6311, 14446, 14446, 6311, 1131, 71,  1;
  ...
Written as polynomials P(n, x):
  [0] 1;
  [1] 1;
  [2] 1 +    x;
  [3] 1 +  5*x +   5*x^2 +     x^3;
  [4] 1 + 14*x +  45*x^2 +  45*x^3 +  14*x^4 +     x^5;
  [5] 1 + 33*x + 255*x^2 + 671*x^3 + 671*x^4 + 255*x^5 + 33*x^6 + x^7;
  ...
P(3, x) = A205497(3, x) * A173018(3, x) = (1 + x) * (1 + 4*x + x^2) = 1 + 5*x + 5*x^2 + x^3.
		

Crossrefs

Cf. A173018 (Eulerian), A205497 (Eulerian zig-zag), A373433 (row sums).

Programs

  • Maple
    # Using the recurrence by Kyle Petersen from A205497.
    R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n - 1); simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
    EC := (n, x) -> local k; simplify(add(combinat:-eulerian1(n, k)*x^k, k = 0..n)):
    EZC := (n, x) -> expand(EZ(n, x) * EC(n, x)):
    Trow := n -> local k; if n < 2 then [1] elif n = 2 then [1, 1] else [seq(coeff(EZC(n, x), x, k), k = 0..2*n-3)] fi:
    seq(print(EZC(n, x)), n = 0..6); seq(print(Trow(n)), n = 0..6);
  • Mathematica
    R[n_] := R[n] = Module[{F}, If[n == 0, 1/(1 - q*x), F = R[n - 1]; Simplify[p/(p - q)*(ReplaceAll[F, {p -> q, q -> p}] - ReplaceAll[F, p -> q])]]];
    EZ[n_, x_] := If[n < 3, 1, Expand[Simplify[ReplaceAll[R[n], {p -> 1, q -> 1}]*(1 - x)^(n + 1)] / x^2]];
    eulerian1[n_, k_] := If[n == 0, 1, Sum[(-1)^j*Binomial[n + 1, j]*(k + 1 - j)^n, {j, 0, k + 1}]];
    EC[n_, x_] :=  Sum[eulerian1[n, k]*x^k, {k, 0, n}];
    EZC [n_, x_] := Expand[EZ[n, x] * EC[n, x]];
    Trow[n_] := CoefficientList[EZC[n, x], x];
    Table[Trow[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2024, after Peter Luschny's Maple program *)

A373427 Triangle read by rows: Coefficients of the polynomials SC(n, x) * EZ(n, x), where SC denote the Stirling cycle polynomials and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 6, 29, 45, 30, 9, 1, 0, 24, 218, 553, 629, 366, 112, 17, 1, 0, 120, 1954, 7781, 13409, 12136, 6270, 1894, 326, 29, 1, 0, 720, 20484, 125968, 313715, 407297, 308286, 143725, 42124, 7683, 830, 47, 1
Offset: 0

Views

Author

Peter Luschny, Jun 07 2024

Keywords

Examples

			Tracing the computation:
0: [1] *          [1] =                    [1]
1: [1] *          [0,  1] =                [0,  1]
2: [1] *          [0,  1, 1] =             [0,  1,   1]
3: [1, 1] *       [0,  2, 3, 1] =          [0,  2,   5,   4,   1]
4: [1, 3, 1] *    [0,  6, 11, 6, 1] =      [0,  6,  29,  45,  30,   9,   1]
5: [1, 7, 7, 1] * [0, 24, 50, 35, 10, 1] = [0, 24, 218, 553, 629, 366, 112,17,1]
		

Crossrefs

Cf. A132393 (Stirling cycle), A205497 (zig-zag Eulerian), A373433 (row sums).

Programs

  • Maple
    EZP((n, k) -> abs(Stirling1(n, k)), 7);  # Using function EZP from A373432.
Showing 1-2 of 2 results.