A373437 Integers k such that sigma(sigma(2*k))=2*sigma(sigma(k)); sigma=A000203.
2, 6, 14, 18, 38, 42, 50, 54, 62, 74, 86, 114, 122, 126, 134, 146, 150, 158, 162, 186, 206, 218, 222, 254, 258, 266, 302, 314, 326, 342, 350, 366, 378, 386, 398, 402, 422, 434, 438, 450, 458, 474, 482, 518, 542, 554, 558, 566, 578, 602, 618, 626, 654, 662, 666, 674, 686, 734, 746, 758, 762, 774, 794
Offset: 1
Keywords
Links
- Graeme L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Exp. Math., 5 (1996), 91-100.
Programs
-
Maple
with(numtheory): P := proc (q) local n, result: result := []: for n to q do if sigma(sigma(2*n)) = 2*sigma(sigma(n)) then result := [op(result), n]: end if end do: print(result): end proc: P(10^3);
-
Mathematica
Select[Range[800],DivisorSigma[1,DivisorSigma[1,2#]]==2DivisorSigma[1,DivisorSigma[1,#]]&] (* Stefano Spezia, Jun 05 2024 *)
-
Python
from sympy import divisor_sigma as sigma def P(q): result = [] for n in range(1, q + 1): if sigma(sigma(2 * n)) == 2 * sigma(sigma(n)): result.append(n) print(result) P(10**3)