cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373449 Number A(n,k) of (binary) heaps of length n whose element set is a subset of [k]; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 5, 1, 0, 1, 5, 10, 14, 7, 1, 0, 1, 6, 15, 30, 25, 11, 1, 0, 1, 7, 21, 55, 65, 53, 16, 1, 0, 1, 8, 28, 91, 140, 173, 100, 26, 1, 0, 1, 9, 36, 140, 266, 448, 400, 222, 36, 1, 0, 1, 10, 45, 204, 462, 994, 1225, 1122, 386, 56, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2024

Keywords

Comments

These heaps may contain repeated elements.

Examples

			A(3,1) = 1: 111.
A(3,2) = 5: 111, 211, 212, 221, 222.
A(3,3) = 14: 111, 211, 212, 221, 222, 311, 312, 313, 321, 322, 323, 331, 332, 333.
(The examples use max-heaps.)
Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,     1,     1,      1, ...
  0, 1,  2,   3,    4,     5,     6,     7,      8, ...
  0, 1,  3,   6,   10,    15,    21,    28,     36, ...
  0, 1,  5,  14,   30,    55,    91,   140,    204, ...
  0, 1,  7,  25,   65,   140,   266,   462,    750, ...
  0, 1, 11,  53,  173,   448,   994,  1974,   3606, ...
  0, 1, 16, 100,  400,  1225,  3136,  7056,  14400, ...
  0, 1, 26, 222, 1122,  4147, 12428, 32028,  73644, ...
  0, 1, 36, 386, 2336, 10036, 34242, 98922, 251922, ...
		

Crossrefs

Columns k=0-2 give: A000007, A000012, A091980(n+1).
Rows n=0-6 give: A000012, A001477, A000217, A000330, A001296, A207361, A001249(k-1).
Main diagonal gives A373450.
Cf. A373451.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
         (g-> (f-> add(A(f, j)*A(n-1-f, j), j=1..k)
                 )(min(g-1, n-g/2)))(2^ilog2(n)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1,
       Function[g, Function[f, Sum[A[f, j]*A[n-1-f, j], {j, 1, k}]][
       Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jun 08 2024, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} binomial(k,j) * A373451(n,k-j).