A373469 Least odd k such that C(2k, k) == 1 (mod A007775(n)), or 0 if no such k exists.
1, 17, 13, 2383, 37, 3, 3391, 185, 129, 419, 95, 139, 7, 7373, 497, 21, 89, 27, 319, 7, 23, 191, 277, 25, 33635, 137, 1957, 347, 879, 889, 47, 57, 411, 263, 63, 57, 63, 143, 62561, 363, 1679, 861, 285735, 1017, 545, 2605, 913, 1873, 735, 206349, 817, 407, 485, 49, 7605, 179817
Offset: 1
Links
- M. F. Hasler and Max Alekseyev, Table of n, a(n) for n = 1..266
Crossrefs
Programs
-
PARI
/* helper function: compute C(n,k) mod prime p */ LucasT(n,k,p)={if(n>=k, my(kp = digits(k,p), np = digits(n,p)[-#kp..-1]); prod(i=1, #kp, binomial(np[i], kp[i]), Mod(1,p)))} is1(k,f)={for(i=1,matsize(f)[1], LucasT(2*k, k, f[i,1])==1||return); vecmax(f[,2])==1 || binomial(2*k,k)%factorback(f)==1} apply( {A373469(n, m=A007775(n), f=factor(m))=!f || forstep(k=3, oo, 2, is1(k,f) && return(k))}, [1..50])
Extensions
a(43)-a(56) from Max Alekseyev, Jul 12 2024
Comments