cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A373517 Expansion of e.g.f. exp(x/(1 - x^3)^(1/3)).

Original entry on oeis.org

1, 1, 1, 1, 9, 41, 121, 1401, 11761, 61489, 864081, 10597841, 81833401, 1350154521, 21715461769, 225232218121, 4267472824161, 84597818284001, 1111699778741281, 23801969674626849, 558853937533757161, 8943028907965939081, 213696639293901810201
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[E^(x/(1 - x^3)^(1/3)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Sep 03 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(n/3-1, k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n/3-1,k)/(n-3*k)!.
a(n) == 1 mod 8.
From Vaclav Kotesovec, Sep 03 2025: (Start)
a(n) = (4*n^3 - 36*n^2 + 112*n - 119)*a(n-3) - 2*(n-6)*(n-5)*(n-4)*(n-3)*(3*n^2 - 27*n + 64)*a(n-6) + 4*(n-9)*(n-8)*(n-7)*(n-6)^3*(n-5)*(n-4)*(n-3)*a(n-9) - (n-12)*(n-11)*(n-10)*(n-9)^2*(n-8)*(n-7)*(n-6)^2*(n-5)*(n-4)*(n-3)*a(n-12).
a(n) ~ (1/2) * exp(4*n^(1/4)/3 - n) * n^(n - 3/8) * (1 - 35/(96*n^(1/4)) - 4367/(18432*sqrt(n)) + 1737829/(5308416*n^(3/4))). (End)

A373523 Expansion of e.g.f. exp(x * (1 + x^3)^(2/3)).

Original entry on oeis.org

1, 1, 1, 1, 17, 81, 241, 1, 5601, 62497, 518561, 313281, 3999601, -40669199, 2177551377, 7318933441, 397613245121, -1411251083199, 9245424513601, -1554110065897343, 8222970963680721, 2117868896399761, 11780583339147607601, -55331596875625839999
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(2*n/3-2*k, k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(2*n/3-2*k,k)/(n-3*k)!.
a(n) == 1 mod 16.

A373680 Expansion of e.g.f. exp(x / (1 - x^3)^2).

Original entry on oeis.org

1, 1, 1, 1, 49, 241, 721, 16801, 204961, 1276129, 19968481, 417479041, 4522597201, 62399971921, 1685741065009, 28122880050721, 415551065616961, 12085752936331201, 281057646411506881, 4923299166925874689, 143004800073025326961, 4244797186148550210481
Offset: 0

Views

Author

Seiichi Manyama, Jun 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(2*n-5*k-1, k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(2*n-5*k-1,k)/(n-3*k)!.
a(n) == 1 (mod 48).
Showing 1-3 of 3 results.